Transformers need glasses! Information over-squashing in language tasks
- URL: http://arxiv.org/abs/2406.04267v2
- Date: Thu, 24 Oct 2024 23:12:55 GMT
- Title: Transformers need glasses! Information over-squashing in language tasks
- Authors: Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G. M. Araújo, Alex Vitvitskyi, Razvan Pascanu, Petar Veličković,
- Abstract summary: We study how information propagates in decoder-only Transformers.
We show that certain sequences of inputs to the Transformer can yield arbitrarily close representations in the final token.
We also show that decoder-only Transformer language models can lose sensitivity to specific tokens in the input.
- Score: 18.81066657470662
- License:
- Abstract: We study how information propagates in decoder-only Transformers, which are the architectural backbone of most existing frontier large language models (LLMs). We rely on a theoretical signal propagation analysis -- specifically, we analyse the representations of the last token in the final layer of the Transformer, as this is the representation used for next-token prediction. Our analysis reveals a representational collapse phenomenon: we prove that certain distinct sequences of inputs to the Transformer can yield arbitrarily close representations in the final token. This effect is exacerbated by the low-precision floating-point formats frequently used in modern LLMs. As a result, the model is provably unable to respond to these sequences in different ways -- leading to errors in, e.g., tasks involving counting or copying. Further, we show that decoder-only Transformer language models can lose sensitivity to specific tokens in the input, which relates to the well-known phenomenon of over-squashing in graph neural networks. We provide empirical evidence supporting our claims on contemporary LLMs. Our theory also points to simple solutions towards ameliorating these issues.
Related papers
- Demystifying Singular Defects in Large Language Models [61.98878352956125]
In large language models (LLMs), the underlying causes of high-norm tokens remain largely unexplored.
We provide both theoretical insights and empirical validation across a range of recent models.
We showcase two practical applications of these findings: the improvement of quantization schemes and the design of LLM signatures.
arXiv Detail & Related papers (2025-02-10T20:09:16Z) - Partially Rewriting a Transformer in Natural Language [0.7234862895932991]
We attempt to partially rewrite a large language model using simple natural language explanations.
We replace the first layer of this sparse with an LLM-based simulator, which predicts the activation of each neuron.
We measure the degree to which these modifications distort the model's final output.
arXiv Detail & Related papers (2025-01-31T01:12:50Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Autoregressive Speech Synthesis without Vector Quantization [135.4776759536272]
We present MELLE, a novel continuous-valued tokens based language modeling approach for text to speech synthesis (TTS)
MELLE autoregressively generates continuous mel-spectrogram frames directly from text condition.
arXiv Detail & Related papers (2024-07-11T14:36:53Z) - Exposing Attention Glitches with Flip-Flop Language Modeling [55.0688535574859]
This work identifies and analyzes the phenomenon of attention glitches in large language models.
We introduce flip-flop language modeling (FFLM), a family of synthetic benchmarks designed to probe the extrapolative behavior of neural language models.
We find that Transformer FFLMs suffer from a long tail of sporadic reasoning errors, some of which we can eliminate using various regularization techniques.
arXiv Detail & Related papers (2023-06-01T17:44:35Z) - Error Correction Code Transformer [92.10654749898927]
We propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.
We encode each channel's output dimension to high dimension for better representation of the bits information to be processed separately.
The proposed approach demonstrates the extreme power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins at a fraction of their time complexity.
arXiv Detail & Related papers (2022-03-27T15:25:58Z) - Incorporating Residual and Normalization Layers into Analysis of Masked
Language Models [29.828669678974983]
We extend the scope of the analysis of Transformers from solely the attention patterns to the whole attention block.
Our analysis of Transformer-based masked language models shows that the token-to-token interaction performed via attention has less impact on the intermediate representations than previously assumed.
arXiv Detail & Related papers (2021-09-15T08:32:20Z) - Addressing Some Limitations of Transformers with Feedback Memory [51.94640029417114]
Transformers have been successfully applied to sequential, auto-regressive tasks despite being feedforward networks.
We propose the Feedback Transformer architecture that exposes all previous representations to all future representations.
We demonstrate on a variety of benchmarks in language modeling, machine translation, and reinforcement learning that the increased representation capacity can create small, shallow models with much stronger performance than comparable Transformers.
arXiv Detail & Related papers (2020-02-21T16:37:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.