xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
- URL: http://arxiv.org/abs/2406.04280v2
- Date: Mon, 04 Nov 2024 17:02:45 GMT
- Title: xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
- Authors: Julius Hense, Mina Jamshidi Idaji, Oliver Eberle, Thomas Schnake, Jonas Dippel, Laure Ciernik, Oliver Buchstab, Andreas Mock, Frederick Klauschen, Klaus-Robert Müller,
- Abstract summary: Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning.
We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions.
Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks.
- Score: 13.939494815120666
- License:
- Abstract: Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker prediction, and outcome prognostication. However, MIL explanation methods are still lagging behind, as they are limited to small bag sizes or disregard instance interactions. We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions. We demonstrate how to obtain improved MIL explanations using layer-wise relevance propagation (LRP) and conduct extensive evaluation experiments on three toy settings and four real-world histopathology datasets. Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks. Finally, we showcase how xMIL explanations enable pathologists to extract insights from MIL models, representing a significant advance for knowledge discovery and model debugging in digital histopathology. Codes are available at: https://github.com/tubml-pathology/xMIL.
Related papers
- Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection [0.0]
Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas.
We propose a general GP-based MIL method that takes different forms by simply leveraging distributions other than the Hyperbolic Secant one.
This is validated in a comprehensive experimental study including one synthetic MIL dataset, two well-known MIL benchmarks, and a real-world medical problem.
arXiv Detail & Related papers (2024-03-21T20:43:34Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Introducing instance label correlation in multiple instance learning.
Application to cancer detection on histopathological images [5.895585247199983]
In this work, we extend a state-of-the-art GP-based MIL method, which is called VGPMIL-PR, to exploit such correlation.
We show that our model achieves better results than other state-of-the-art probabilistic MIL methods.
arXiv Detail & Related papers (2023-10-30T08:57:59Z) - Reproducibility in Multiple Instance Learning: A Case For Algorithmic
Unit Tests [59.623267208433255]
Multiple Instance Learning (MIL) is a sub-domain of classification problems with positive and negative labels and a "bag" of inputs.
In this work, we examine five of the most prominent deep-MIL models and find that none of them respects the standard MIL assumption.
We identify and demonstrate this problem via a proposed "algorithmic unit test", where we create synthetic datasets that can be solved by a MIL respecting model.
arXiv Detail & Related papers (2023-10-27T03:05:11Z) - PDL: Regularizing Multiple Instance Learning with Progressive Dropout Layers [2.069061136213899]
Multiple instance learning (MIL) was a weakly supervised learning approach that sought to assign binary class labels to collections of instances known as bags.
We present a novel approach in the form of a Progressive Dropout Layer (PDL) to address overfitting and empower the MIL model in uncovering intricate and impactful feature representations.
arXiv Detail & Related papers (2023-08-19T21:20:30Z) - Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly
Detection [74.80595632328094]
Multiple Instance Learning (MIL) is prevailing in Weakly Supervised Video Anomaly Detection (WSVAD)
We propose a new MIL framework: Unbiased MIL (UMIL), to learn unbiased anomaly features that improve WSVAD.
arXiv Detail & Related papers (2023-03-22T08:11:22Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Histopathological Image Classification based on Self-Supervised Vision
Transformer and Weak Labels [16.865729758055448]
We propose Self-ViT-MIL, a novel approach for classifying and localizing cancerous areas based on slide-level annotations.
Self-ViT-MIL surpasses existing state-of-the-art MIL-based approaches in terms of accuracy and area under the curve.
arXiv Detail & Related papers (2022-10-17T12:43:41Z) - MAML and ANIL Provably Learn Representations [60.17417686153103]
We prove that two well-known meta-learning methods, MAML and ANIL, are capable of learning common representation among a set of given tasks.
Specifically, in the well-known multi-task linear representation learning setting, they are able to recover the ground-truth representation at an exponentially fast rate.
Our analysis illuminates that the driving force causing MAML and ANIL to recover the underlying representation is that they adapt the final layer of their model.
arXiv Detail & Related papers (2022-02-07T19:43:02Z) - ProtoMIL: Multiple Instance Learning with Prototypical Parts for
Fine-Grained Interpretability [2.094672430475796]
Multiple Instance Learning (MIL) gains popularity in many real-life machine learning applications due to its weakly supervised nature.
In this paper, we introduce ProtoMIL, a novel self-explainable MIL method inspired by the case-based reasoning process that operates on visual prototypes.
Thanks to incorporating prototypical features into objects description, ProtoMIL unprecedentedly joins the model accuracy and fine-grained interpretability.
arXiv Detail & Related papers (2021-08-24T10:02:31Z) - CIL: Contrastive Instance Learning Framework for Distantly Supervised
Relation Extraction [52.94486705393062]
We go beyond typical multi-instance learning (MIL) framework and propose a novel contrastive instance learning (CIL) framework.
Specifically, we regard the initial MIL as the relational triple encoder and constraint positive pairs against negative pairs for each instance.
Experiments demonstrate the effectiveness of our proposed framework, with significant improvements over the previous methods on NYT10, GDS and KBP.
arXiv Detail & Related papers (2021-06-21T04:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.