What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages
- URL: http://arxiv.org/abs/2406.04289v5
- Date: Sun, 12 Jan 2025 15:43:54 GMT
- Title: What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages
- Authors: Nadav Borenstein, Anej Svete, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein, Eleanor Chodroff, Ryan Cotterell,
- Abstract summary: Large language models (LM) are distributions over strings.
We investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs.
We find that the complexity of the RLM rank is strong and significant predictors of learnability for both RNNs and Transformers.
- Score: 78.1866280652834
- License:
- Abstract: What can large language models learn? By definition, language models (LM) are distributions over strings. Therefore, an intuitive way of addressing the above question is to formalize it as a matter of learnability of classes of distributions over strings. While prior work in this direction focused on assessing the theoretical limits, in contrast, we seek to understand the empirical learnability. Unlike prior empirical work, we evaluate neural LMs on their home turf-learning probabilistic languages-rather than as classifiers of formal languages. In particular, we investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs. We empirically test the learnability of RLMs as a function of various complexity parameters of the RLM and the hidden state size of the neural LM. We find that the RLM rank, which corresponds to the size of linear space spanned by the logits of its conditional distributions, and the expected length of sampled strings are strong and significant predictors of learnability for both RNNs and Transformers. Several other predictors also reach significance, but with differing patterns between RNNs and Transformers.
Related papers
- Can Language Models Learn Typologically Implausible Languages? [62.823015163987996]
Grammatical features across human languages show intriguing correlations often attributed to learning biases in humans.
We discuss how language models (LMs) allow us to better determine the role of domain-general learning biases in language universals.
We test LMs on an array of highly naturalistic but counterfactual versions of the English (head-initial) and Japanese (head-final) languages.
arXiv Detail & Related papers (2025-02-17T20:40:01Z) - Randomly Sampled Language Reasoning Problems Reveal Limits of LLMs [8.146860674148044]
We attempt to measure models' language understanding capacity while circumventing the risk of dataset recall.
We parameterize large families of language tasks recognized by deterministic finite automata (DFAs)
We find that, even in the strikingly simple setting of 3-state DFAs, LLMs underperform un parameterized ngram models on both language recognition and synthesis tasks.
arXiv Detail & Related papers (2025-01-06T07:57:51Z) - Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
Formal language theory pertains specifically to recognizers.
It is common to instead use proxy tasks that are similar in only an informal sense.
We correct this mismatch by training and evaluating neural networks directly as binary classifiers of strings.
arXiv Detail & Related papers (2024-11-11T16:33:25Z) - Recurrent Neural Language Models as Probabilistic Finite-state Automata [66.23172872811594]
We study what classes of probability distributions RNN LMs can represent.
We show that simple RNNs are equivalent to a subclass of probabilistic finite-state automata.
These results present a first step towards characterizing the classes of distributions RNN LMs can represent.
arXiv Detail & Related papers (2023-10-08T13:36:05Z) - Advancing Regular Language Reasoning in Linear Recurrent Neural Networks [56.11830645258106]
We study whether linear recurrent neural networks (LRNNs) can learn the hidden rules in training sequences.
We propose a new LRNN equipped with a block-diagonal and input-dependent transition matrix.
Experiments suggest that the proposed model is the only LRNN capable of performing length extrapolation on regular language tasks.
arXiv Detail & Related papers (2023-09-14T03:36:01Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
Language models must capture statistical dependencies between words at timescales ranging from very short to very long.
We derived a theory for how the memory gating mechanism in long short-term memory language models can capture power law decay.
Experiments showed that LSTM language models trained on natural English text learn to approximate this theoretical distribution.
arXiv Detail & Related papers (2020-09-27T02:13:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.