ATraDiff: Accelerating Online Reinforcement Learning with Imaginary Trajectories
- URL: http://arxiv.org/abs/2406.04323v1
- Date: Thu, 6 Jun 2024 17:58:15 GMT
- Title: ATraDiff: Accelerating Online Reinforcement Learning with Imaginary Trajectories
- Authors: Qianlan Yang, Yu-Xiong Wang,
- Abstract summary: Training autonomous agents with sparse rewards is a long-standing problem in online reinforcement learning (RL)
We propose a novel approach that leverages offline data to learn a generative diffusion model, coined as Adaptive Trajectory diffuser (ATraDiff)
ATraDiff consistently achieves state-of-the-art performance across a variety of environments, with particularly pronounced improvements in complicated settings.
- Score: 27.5648276335047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training autonomous agents with sparse rewards is a long-standing problem in online reinforcement learning (RL), due to low data efficiency. Prior work overcomes this challenge by extracting useful knowledge from offline data, often accomplished through the learning of action distribution from offline data and utilizing the learned distribution to facilitate online RL. However, since the offline data are given and fixed, the extracted knowledge is inherently limited, making it difficult to generalize to new tasks. We propose a novel approach that leverages offline data to learn a generative diffusion model, coined as Adaptive Trajectory Diffuser (ATraDiff). This model generates synthetic trajectories, serving as a form of data augmentation and consequently enhancing the performance of online RL methods. The key strength of our diffuser lies in its adaptability, allowing it to effectively handle varying trajectory lengths and mitigate distribution shifts between online and offline data. Because of its simplicity, ATraDiff seamlessly integrates with a wide spectrum of RL methods. Empirical evaluation shows that ATraDiff consistently achieves state-of-the-art performance across a variety of environments, with particularly pronounced improvements in complicated settings. Our code and demo video are available at https://atradiff.github.io .
Related papers
- Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning [13.802860320234469]
We introduce textbfEnergy-guided textbfDIffusion textbfSampling (EDIS)
EDIS uses a diffusion model to extract prior knowledge from the offline dataset and employs energy functions to distill this knowledge for enhanced data generation in the online phase.
We observe a notable 20% average improvement in empirical performance on MuJoCo, AntMaze, and Adroit environments.
arXiv Detail & Related papers (2024-07-17T09:56:51Z) - DiffStitch: Boosting Offline Reinforcement Learning with Diffusion-based
Trajectory Stitching [21.263554926053178]
In offline reinforcement learning (RL), the performance of the learned policy highly depends on the quality of offline datasets.
We introduce Diffusion-based Trajectory Stitching (DiffStitch), a novel diffusion-based data augmentation pipeline.
DiffStitch effectively connects low-reward trajectories with high-reward trajectories, forming globally optimal trajectories to address the challenges faced by offline RL algorithms.
arXiv Detail & Related papers (2024-02-04T10:30:23Z) - Enhancing data efficiency in reinforcement learning: a novel imagination
mechanism based on mesh information propagation [0.3729614006275886]
We introduce a novel mesh information propagation mechanism, termed the 'Imagination Mechanism (IM)'
IM enables information generated by a single sample to be effectively broadcasted to different states across episodes.
To promote versatility, we extend the IM to function as a plug-and-play module that can be seamlessly and fluidly integrated into other widely adopted RL algorithms.
arXiv Detail & Related papers (2023-09-25T16:03:08Z) - Reasoning with Latent Diffusion in Offline Reinforcement Learning [11.349356866928547]
offline reinforcement learning holds promise as a means to learn high-reward policies from a static dataset.
Key challenge in offline RL lies in effectively stitching portions of suboptimal trajectories from the static dataset.
We propose a novel approach that leverages the expressiveness of latent diffusion to model in-support trajectory sequences as compressed latent skills.
arXiv Detail & Related papers (2023-09-12T20:58:21Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
offline reinforcement learning (RL) is challenged by the distributional shift between learning policies and datasets.
We propose a simple yet effective method to boost offline RL algorithms based on the observation that resampling a dataset keeps the distribution support unchanged.
We dub our method ReD (Return-based Data Rebalance), which can be implemented with less than 10 lines of code change and adds negligible running time.
arXiv Detail & Related papers (2022-10-17T16:34:01Z) - RvS: What is Essential for Offline RL via Supervised Learning? [77.91045677562802]
Recent work has shown that supervised learning alone, without temporal difference (TD) learning, can be remarkably effective for offline RL.
In every environment suite we consider simply maximizing likelihood with two-layer feedforward is competitive.
They also probe the limits of existing RvS methods, which are comparatively weak on random data.
arXiv Detail & Related papers (2021-12-20T18:55:16Z) - Offline Meta-Reinforcement Learning with Online Self-Supervision [66.42016534065276]
We propose a hybrid offline meta-RL algorithm, which uses offline data with rewards to meta-train an adaptive policy.
Our method uses the offline data to learn the distribution of reward functions, which is then sampled to self-supervise reward labels for the additional online data.
We find that using additional data and self-generated rewards significantly improves an agent's ability to generalize.
arXiv Detail & Related papers (2021-07-08T17:01:32Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
In many practical applications, the situation is reversed: an agent may have access to large amounts of undirected offline experience data, while access to the online environment is severely limited.
Our main insight is that, when presented with offline data composed of a variety of behaviors, an effective way to leverage this data is to extract a continuous space of recurring and temporally extended primitive behaviors.
In addition to benefiting offline policy optimization, we show that performing offline primitive learning in this way can also be leveraged for improving few-shot imitation learning.
arXiv Detail & Related papers (2020-10-26T14:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.