Stereo-Depth Fusion through Virtual Pattern Projection
- URL: http://arxiv.org/abs/2406.04345v1
- Date: Thu, 6 Jun 2024 17:59:58 GMT
- Title: Stereo-Depth Fusion through Virtual Pattern Projection
- Authors: Luca Bartolomei, Matteo Poggi, Fabio Tosi, Andrea Conti, Stefano Mattoccia,
- Abstract summary: This paper presents a novel general-purpose stereo and depth data fusion paradigm.
It mimics the active stereo principle by replacing the unreliable physical pattern projector with a depth sensor.
It works by projecting virtual patterns consistent with the scene geometry onto the left and right images acquired by a conventional stereo camera.
- Score: 37.519762078762575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel general-purpose stereo and depth data fusion paradigm that mimics the active stereo principle by replacing the unreliable physical pattern projector with a depth sensor. It works by projecting virtual patterns consistent with the scene geometry onto the left and right images acquired by a conventional stereo camera, using the sparse hints obtained from a depth sensor, to facilitate the visual correspondence. Purposely, any depth sensing device can be seamlessly plugged into our framework, enabling the deployment of a virtual active stereo setup in any possible environment and overcoming the severe limitations of physical pattern projection, such as the limited working range and environmental conditions. Exhaustive experiments on indoor and outdoor datasets featuring both long and close range, including those providing raw, unfiltered depth hints from off-the-shelf depth sensors, highlight the effectiveness of our approach in notably boosting the robustness and accuracy of algorithms and deep stereo without any code modification and even without re-training. Additionally, we assess the performance of our strategy on active stereo evaluation datasets with conventional pattern projection. Indeed, in all these scenarios, our virtual pattern projection paradigm achieves state-of-the-art performance. The source code is available at: https://github.com/bartn8/vppstereo.
Related papers
- ClearDepth: Enhanced Stereo Perception of Transparent Objects for Robotic Manipulation [18.140839442955485]
We develop a vision transformer-based algorithm for stereo depth recovery of transparent objects.
Our method incorporates a parameter-aligned, domain-adaptive, and physically realistic Sim2Real simulation for efficient data generation.
Our experimental results demonstrate the model's exceptional Sim2Real generalizability in real-world scenarios.
arXiv Detail & Related papers (2024-09-13T15:44:38Z) - Active Stereo Without Pattern Projector [40.25292494550211]
This paper proposes a novel framework integrating the principles of active stereo in standard passive camera systems without a physical pattern projector.
We virtually project a pattern over the left and right images according to the sparse measurements obtained from a depth sensor.
arXiv Detail & Related papers (2023-09-21T17:59:56Z) - Visual Attention-based Self-supervised Absolute Depth Estimation using
Geometric Priors in Autonomous Driving [8.045833295463094]
We introduce a fully Visual Attention-based Depth (VADepth) network, where spatial attention and channel attention are applied to all stages.
By continuously extracting the dependencies of features along the spatial and channel dimensions over a long distance, VADepth network can effectively preserve important details.
Experimental results on the KITTI dataset show that this architecture achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-05-18T08:01:38Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Self-Supervised Depth Completion for Active Stereo [55.79929735390945]
Active stereo systems are widely used in the robotics industry due to their low cost and high quality depth maps.
These depth sensors suffer from stereo artefacts and do not provide dense depth estimates.
We present the first self-supervised depth completion method for active stereo systems that predicts accurate dense depth maps.
arXiv Detail & Related papers (2021-10-07T07:33:52Z) - CodedStereo: Learned Phase Masks for Large Depth-of-field Stereo [24.193656749401075]
Conventional stereo suffers from a fundamental trade-off between imaging volume and signal-to-noise ratio.
We propose a novel end-to-end learning-based technique to overcome this limitation.
We show a 6x increase in volume that can be imaged in simulation.
arXiv Detail & Related papers (2021-04-09T23:44:52Z) - Self-supervised Visual-LiDAR Odometry with Flip Consistency [7.883162238852467]
Self-supervised visual-lidar odometry (Self-VLO) framework is proposed.
It takes both monocular images and sparse depth maps projected from 3D lidar points as input.
It produces pose and depth estimations in an end-to-end learning manner.
arXiv Detail & Related papers (2021-01-05T02:42:59Z) - Polka Lines: Learning Structured Illumination and Reconstruction for
Active Stereo [52.68109922159688]
We introduce a novel differentiable image formation model for active stereo, relying on both wave and geometric optics, and a novel trinocular reconstruction network.
The jointly optimized pattern, which we dub "Polka Lines," together with the reconstruction network, achieve state-of-the-art active-stereo depth estimates across imaging conditions.
arXiv Detail & Related papers (2020-11-26T04:02:43Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
We present an omnidirectional localization and dense mapping system for a wide-baseline multiview stereo setup with ultra-wide field-of-view (FOV) fisheye cameras.
For more practical and accurate reconstruction, we first introduce improved and light-weighted deep neural networks for the omnidirectional depth estimation.
We integrate our omnidirectional depth estimates into the visual odometry (VO) and add a loop closing module for global consistency.
arXiv Detail & Related papers (2020-03-18T05:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.