Automating Patch Set Generation from Code Review Comments Using Large Language Models
- URL: http://arxiv.org/abs/2406.04346v1
- Date: Wed, 10 Apr 2024 02:46:08 GMT
- Title: Automating Patch Set Generation from Code Review Comments Using Large Language Models
- Authors: Tajmilur Rahman, Rahul Singh, Mir Yousuf Sultan,
- Abstract summary: We provide code contexts to five popular Large Language Models (LLMs)
We obtain the suggested code-changes (patch sets) derived from real-world code-review comments.
The performance of each model is meticulously assessed by comparing their generated patch sets against the historical data of human-generated patch-sets.
- Score: 2.045040820541428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Large Language Models (LLMs) has revolutionized various domains of artificial intelligence, including the realm of software engineering. In this research, we evaluate the efficacy of pre-trained LLMs in replicating the tasks traditionally performed by developers in response to code review comments. We provide code contexts to five popular LLMs and obtain the suggested code-changes (patch sets) derived from real-world code-review comments. The performance of each model is meticulously assessed by comparing their generated patch sets against the historical data of human-generated patch-sets from the same repositories. This comparative analysis aims to determine the accuracy, relevance, and depth of the LLMs' feedback, thereby evaluating their readiness to support developers in responding to code-review comments. Novelty: This particular research area is still immature requiring a substantial amount of studies yet to be done. No prior research has compared the performance of existing Large Language Models (LLMs) in code-review comments. This in-progress study assesses current LLMs in code review and paves the way for future advancements in automated code quality assurance, reducing context-switching overhead due to interruptions from code change requests.
Related papers
- A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
This paper provides a comprehensive review of the current methods and metrics used to evaluate the performance of Large Language Models (LLMs) in code generation tasks.
With the rapid growth in demand for automated software development, LLMs have demonstrated significant potential in the field of code generation.
arXiv Detail & Related papers (2024-08-29T12:56:06Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
Large language models (LLMs) have led to a great boost in the performance of code-related tasks.
In this paper, we undertake a systematic and comprehensive study on code summarization in the era of LLMs.
arXiv Detail & Related papers (2024-07-09T05:48:42Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - Towards more realistic evaluation of LLM-based code generation: an experimental study and beyond [36.1669124651617]
We conduct an empirical study to understand Large Language Models' code generation performance within settings that reflect the evolving nature of software development.
We find that previous evolving-ignored evaluation approaches lead to inflated performance of the LLMs, ranging from 10.0% to 61.1%.
arXiv Detail & Related papers (2024-06-11T03:19:18Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - AI-powered Code Review with LLMs: Early Results [10.37036924997437]
We present a novel approach to improving software quality and efficiency through a Large Language Model (LLM)-based model.
Our proposed LLM-based AI agent model is trained on large code repositories.
It aims to detect code smells, identify potential bugs, provide suggestions for improvement, and optimize the code.
arXiv Detail & Related papers (2024-04-29T08:27:50Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - Code Needs Comments: Enhancing Code LLMs with Comment Augmentation [91.52444946362547]
We introduce a novel data augmentation method that generates comments for existing code, coupled with a data filtering strategy that filters out code data poorly correlated with natural language.
We conducted experiments on three code-focused Large Language Models and observed consistent improvements in performance on two widely-used programming skill benchmarks.
arXiv Detail & Related papers (2024-02-20T13:56:38Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.