Optimization of geological carbon storage operations with multimodal latent dynamic model and deep reinforcement learning
- URL: http://arxiv.org/abs/2406.04575v1
- Date: Fri, 7 Jun 2024 01:30:21 GMT
- Title: Optimization of geological carbon storage operations with multimodal latent dynamic model and deep reinforcement learning
- Authors: Zhongzheng Wang, Yuntian Chen, Guodong Chen, Dongxiao Zhang,
- Abstract summary: This study introduces the multimodal latent dynamic (MLD) model, a deep learning framework for fast flow prediction and well control optimization in GCS.
Unlike existing models, the MLD supports diverse input modalities, allowing comprehensive data interactions.
The approach outperforms traditional methods, achieving the highest NPV while reducing computational resources by over 60%.
- Score: 1.8549313085249324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximizing storage performance in geological carbon storage (GCS) is crucial for commercial deployment, but traditional optimization demands resource-intensive simulations, posing computational challenges. This study introduces the multimodal latent dynamic (MLD) model, a deep learning framework for fast flow prediction and well control optimization in GCS. The MLD model includes a representation module for compressed latent representations, a transition module for system state evolution, and a prediction module for flow responses. A novel training strategy combining regression loss and joint-embedding consistency loss enhances temporal consistency and multi-step prediction accuracy. Unlike existing models, the MLD supports diverse input modalities, allowing comprehensive data interactions. The MLD model, resembling a Markov decision process (MDP), can train deep reinforcement learning agents, specifically using the soft actor-critic (SAC) algorithm, to maximize net present value (NPV) through continuous interactions. The approach outperforms traditional methods, achieving the highest NPV while reducing computational resources by over 60%. It also demonstrates strong generalization performance, providing improved decisions for new scenarios based on knowledge from previous ones.
Related papers
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Self-learning sparse PCA for multimode process monitoring [2.8102838347038617]
This paper proposes a novel sparse principal component analysis algorithm with self-learning ability for successive modes.
Different from traditional multimode monitoring methods, the monitoring model is updated based on the current model and new data when a new mode arrives.
arXiv Detail & Related papers (2021-08-07T13:50:16Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - XLVIN: eXecuted Latent Value Iteration Nets [17.535799331279417]
Value Iteration Networks (VINs) have emerged as a popular method to incorporate planning algorithms within deep reinforcement learning.
We propose XLVINs, which combine recent developments across contrastive self-supervised learning, graph representation learning and neural algorithmic reasoning.
arXiv Detail & Related papers (2020-10-25T16:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.