A Survey of Fragile Model Watermarking
- URL: http://arxiv.org/abs/2406.04809v5
- Date: Wed, 14 Aug 2024 09:02:33 GMT
- Title: A Survey of Fragile Model Watermarking
- Authors: Zhenzhe Gao, Yu Cheng, Zhaoxia Yin,
- Abstract summary: Model fragile watermarking has gradually emerged as a potent tool for detecting tampering.
This paper provides an overview of the relevant work in the field of model fragile watermarking since its inception.
- Score: 14.517951900805317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model fragile watermarking, inspired by both the field of adversarial attacks on neural networks and traditional multimedia fragile watermarking, has gradually emerged as a potent tool for detecting tampering, and has witnessed rapid development in recent years. Unlike robust watermarks, which are widely used for identifying model copyrights, fragile watermarks for models are designed to identify whether models have been subjected to unexpected alterations such as backdoors, poisoning, compression, among others. These alterations can pose unknown risks to model users, such as misidentifying stop signs as speed limit signs in classic autonomous driving scenarios. This paper provides an overview of the relevant work in the field of model fragile watermarking since its inception, categorizing them and revealing the developmental trajectory of the field, thus offering a comprehensive survey for future endeavors in model fragile watermarking.
Related papers
- Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images.
Recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations.
In this paper, we examine the robustness of various watermark-based protection methods applied to text-to-image models.
arXiv Detail & Related papers (2024-11-22T22:28:19Z) - On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective [39.676548104635096]
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security.
Model watermarking is a powerful technique for protecting ownership of machine learning models.
We propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method.
arXiv Detail & Related papers (2024-09-10T00:55:21Z) - Robustness of Watermarking on Text-to-Image Diffusion Models [9.277492743469235]
We investigate the robustness of generative watermarking, which is created from the integration of watermarking embedding and text-to-image generation processing.
We found that generative watermarking methods are robust to direct evasion attacks, like discriminator-based attacks, or manipulation based on the edge information in edge prediction-based attacks but vulnerable to malicious fine-tuning.
arXiv Detail & Related papers (2024-08-04T13:59:09Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Reversible Watermarking in Deep Convolutional Neural Networks for
Integrity Authentication [78.165255859254]
We propose a reversible watermarking algorithm for integrity authentication.
The influence of embedding reversible watermarking on the classification performance is less than 0.5%.
At the same time, the integrity of the model can be verified by applying the reversible watermarking.
arXiv Detail & Related papers (2021-04-09T09:32:21Z) - A Systematic Review on Model Watermarking for Neural Networks [1.2691047660244335]
This work presents a taxonomy identifying and analyzing different classes of watermarking schemes for machine learning models.
It introduces a unified threat model to allow structured reasoning on and comparison of the effectiveness of watermarking methods.
It systematizes desired security requirements and attacks against ML model watermarking.
arXiv Detail & Related papers (2020-09-25T12:03:02Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z) - Model Watermarking for Image Processing Networks [120.918532981871]
How to protect the intellectual property of deep models is a very important but seriously under-researched problem.
We propose the first model watermarking framework for protecting image processing models.
arXiv Detail & Related papers (2020-02-25T18:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.