Navigating Efficiency in MobileViT through Gaussian Process on Global Architecture Factors
- URL: http://arxiv.org/abs/2406.04820v1
- Date: Fri, 7 Jun 2024 10:41:24 GMT
- Title: Navigating Efficiency in MobileViT through Gaussian Process on Global Architecture Factors
- Authors: Ke Meng, Kai Chen,
- Abstract summary: We leverage the Gaussian process to explore the relationship between performance and global architecture factors of MobileViT.
We present design principles twisting magic 4D cube of the global architecture factors that minimize model sizes and computational costs with higher model accuracy.
Experiment results show that our formula significantly outperforms CNNs and mobile ViTs across diversified datasets.
- Score: 11.030156344387732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous techniques have been meticulously designed to achieve optimal architectures for convolutional neural networks (CNNs), yet a comparable focus on vision transformers (ViTs) has been somewhat lacking. Despite the remarkable success of ViTs in various vision tasks, their heavyweight nature presents challenges of computational costs. In this paper, we leverage the Gaussian process to systematically explore the nonlinear and uncertain relationship between performance and global architecture factors of MobileViT, such as resolution, width, and depth including the depth of in-verted residual blocks and the depth of ViT blocks, and joint factors including resolution-depth and resolution-width. We present design principles twisting magic 4D cube of the global architecture factors that minimize model sizes and computational costs with higher model accuracy. We introduce a formula for downsizing architectures by iteratively deriving smaller MobileViT V2, all while adhering to a specified constraint of multiply-accumulate operations (MACs). Experiment results show that our formula significantly outperforms CNNs and mobile ViTs across diversified datasets
Related papers
- LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiT is a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework.
We introduce key innovations to optimize generative performance for vision tasks.
The model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks.
arXiv Detail & Related papers (2024-11-18T12:05:27Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optimizing Vision Transformers with Data-Free Knowledge Transfer [8.323741354066474]
Vision transformers (ViTs) have excelled in various computer vision tasks due to their superior ability to capture long-distance dependencies.
We propose compressing large ViT models using Knowledge Distillation (KD), which is implemented data-free to circumvent limitations related to data availability.
arXiv Detail & Related papers (2024-08-12T07:03:35Z) - A survey on efficient vision transformers: algorithms, techniques, and
performance benchmarking [19.65897437342896]
Vision Transformer (ViT) architectures are becoming increasingly popular and widely employed to tackle computer vision applications.
This paper mathematically defines the strategies used to make Vision Transformer efficient, describes and discusses state-of-the-art methodologies, and analyzes their performances over different application scenarios.
arXiv Detail & Related papers (2023-09-05T08:21:16Z) - TurboViT: Generating Fast Vision Transformers via Generative
Architecture Search [74.24393546346974]
Vision transformers have shown unprecedented levels of performance in tackling various visual perception tasks in recent years.
There has been significant research recently on the design of efficient vision transformer architecture.
In this study, we explore the generation of fast vision transformer architecture designs via generative architecture search.
arXiv Detail & Related papers (2023-08-22T13:08:29Z) - Light-Weight Vision Transformer with Parallel Local and Global
Self-Attention [11.255962936937744]
We redesign Vision Transformer PLG-ViT to be more compact and efficient.
We achieve 79.5$%$ top-1 accuracy on the ImageNet-1K classification benchmark.
Our networks demonstrate great performance on general vision benchmarks.
arXiv Detail & Related papers (2023-07-18T10:07:06Z) - GOHSP: A Unified Framework of Graph and Optimization-based Heterogeneous
Structured Pruning for Vision Transformer [76.2625311630021]
Vision transformers (ViTs) have shown very impressive empirical performance in various computer vision tasks.
To mitigate this challenging problem, structured pruning is a promising solution to compress model size and enable practical efficiency.
We propose GOHSP, a unified framework of Graph and Optimization-based Structured Pruning for ViT models.
arXiv Detail & Related papers (2023-01-13T00:40:24Z) - Grafting Vision Transformers [42.71480918208436]
Vision Transformers (ViTs) have recently become the state-of-the-art across many computer vision tasks.
GrafT considers global dependencies and multi-scale information throughout the network.
It has the flexibility of branching out at arbitrary depths and shares most of the parameters and computations of the backbone.
arXiv Detail & Related papers (2022-10-28T07:07:13Z) - A Simple Single-Scale Vision Transformer for Object Localization and
Instance Segmentation [79.265315267391]
We propose a simple and compact ViT architecture called Universal Vision Transformer (UViT)
UViT achieves strong performance on object detection and instance segmentation tasks.
arXiv Detail & Related papers (2021-12-17T20:11:56Z) - Global Vision Transformer Pruning with Hessian-Aware Saliency [93.33895899995224]
This work challenges the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage.
We derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction.
Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter that utilizes parameters more efficiently.
arXiv Detail & Related papers (2021-10-10T18:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.