InstructNav: Zero-shot System for Generic Instruction Navigation in Unexplored Environment
- URL: http://arxiv.org/abs/2406.04882v1
- Date: Fri, 7 Jun 2024 12:26:34 GMT
- Title: InstructNav: Zero-shot System for Generic Instruction Navigation in Unexplored Environment
- Authors: Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, Hao Dong,
- Abstract summary: In this work, we propose InstructNav, a generic instruction navigation system.
InstructNav makes the first endeavor to handle various instruction navigation tasks without any navigation training or pre-built maps.
With InstructNav, we complete the R2R-CE task in a zero-shot way for the first time and outperform many task-training methods.
- Score: 5.43847693345519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling robots to navigate following diverse language instructions in unexplored environments is an attractive goal for human-robot interaction. However, this goal is challenging because different navigation tasks require different strategies. The scarcity of instruction navigation data hinders training an instruction navigation model with varied strategies. Therefore, previous methods are all constrained to one specific type of navigation instruction. In this work, we propose InstructNav, a generic instruction navigation system. InstructNav makes the first endeavor to handle various instruction navigation tasks without any navigation training or pre-built maps. To reach this goal, we introduce Dynamic Chain-of-Navigation (DCoN) to unify the planning process for different types of navigation instructions. Furthermore, we propose Multi-sourced Value Maps to model key elements in instruction navigation so that linguistic DCoN planning can be converted into robot actionable trajectories. With InstructNav, we complete the R2R-CE task in a zero-shot way for the first time and outperform many task-training methods. Besides, InstructNav also surpasses the previous SOTA method by 10.48% on the zero-shot Habitat ObjNav and by 86.34% on demand-driven navigation DDN. Real robot experiments on diverse indoor scenes further demonstrate our method's robustness in coping with the environment and instruction variations.
Related papers
- SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments [14.179677726976056]
SayNav is a new approach that leverages human knowledge from Large Language Models (LLMs) for efficient generalization to complex navigation tasks.
SayNav achieves state-of-the-art results and even outperforms an oracle based baseline with strong ground-truth assumptions by more than 8% in terms of success rate.
arXiv Detail & Related papers (2023-09-08T02:24:37Z) - $A^2$Nav: Action-Aware Zero-Shot Robot Navigation by Exploiting
Vision-and-Language Ability of Foundation Models [89.64729024399634]
We study the task of zero-shot vision-and-language navigation (ZS-VLN), a practical yet challenging problem in which an agent learns to navigate following a path described by language instructions.
Normally, the instructions have complex grammatical structures and often contain various action descriptions.
How to correctly understand and execute these action demands is a critical problem, and the absence of annotated data makes it even more challenging.
arXiv Detail & Related papers (2023-08-15T19:01:19Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Lana: A Language-Capable Navigator for Instruction Following and
Generation [70.76686546473994]
LANA is a language-capable navigation agent which is able to execute human-written navigation commands and provide route descriptions to humans.
We empirically verify that, compared with recent advanced task-specific solutions, LANA attains better performances on both instruction following and route description.
In addition, endowed with language generation capability, LANA can explain to humans its behaviors and assist human's wayfinding.
arXiv Detail & Related papers (2023-03-15T07:21:28Z) - Towards Versatile Embodied Navigation [120.73460380993305]
Vienna is a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model.
We empirically demonstrate that, compared with learning each visual navigation task individually, our agent achieves comparable or even better performance with reduced complexity.
arXiv Detail & Related papers (2022-10-30T11:53:49Z) - Adversarial Reinforced Instruction Attacker for Robust Vision-Language
Navigation [145.84123197129298]
Language instruction plays an essential role in the natural language grounded navigation tasks.
We exploit to train a more robust navigator which is capable of dynamically extracting crucial factors from the long instruction.
Specifically, we propose a Dynamic Reinforced Instruction Attacker (DR-Attacker), which learns to mislead the navigator to move to the wrong target.
arXiv Detail & Related papers (2021-07-23T14:11:31Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments.
One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment.
This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent VLN policy.
arXiv Detail & Related papers (2020-07-15T23:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.