Semantic Segmentation on VSPW Dataset through Masked Video Consistency
- URL: http://arxiv.org/abs/2406.04979v1
- Date: Fri, 7 Jun 2024 14:41:24 GMT
- Title: Semantic Segmentation on VSPW Dataset through Masked Video Consistency
- Authors: Chen Liang, Qiang Guo, Chongkai Yu, Chengjing Wu, Ting Liu, Luoqi Liu,
- Abstract summary: We present our solution for the PVUW competition, where we introduce masked video (MVC) based on existing models.
MVC enforces consistency between predictions of masked random frames where patches are withheld.
Our approach achieves 67% mIoU performance on the VSPW dataset, ranking 2nd in the PVUW2024 VSS track.
- Score: 19.851665554201407
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Pixel-level Video Understanding requires effectively integrating three-dimensional data in both spatial and temporal dimensions to learn accurate and stable semantic information from continuous frames. However, existing advanced models on the VSPW dataset have not fully modeled spatiotemporal relationships. In this paper, we present our solution for the PVUW competition, where we introduce masked video consistency (MVC) based on existing models. MVC enforces the consistency between predictions of masked frames where random patches are withheld. The model needs to learn the segmentation results of the masked parts through the context of images and the relationship between preceding and succeeding frames of the video. Additionally, we employed test-time augmentation, model aggeregation and a multimodal model-based post-processing method. Our approach achieves 67.27% mIoU performance on the VSPW dataset, ranking 2nd place in the PVUW2024 challenge VSS track.
Related papers
- xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
Video segmentation aims at partitioning video sequences into meaningful segments based on objects or regions of interest within frames.
Current video segmentation models are often derived from image segmentation techniques, which struggle to cope with small-scale or class-imbalanced video datasets.
We propose a training strategy Masked Video Consistency, which enhances spatial and temporal feature aggregation.
arXiv Detail & Related papers (2024-08-20T08:08:32Z) - Zero-Shot Video Semantic Segmentation based on Pre-Trained Diffusion Models [96.97910688908956]
We introduce the first zero-shot approach for Video Semantic (VSS) based on pre-trained diffusion models.
We propose a framework tailored for VSS based on pre-trained image and video diffusion models.
Experiments show that our proposed approach outperforms existing zero-shot image semantic segmentation approaches.
arXiv Detail & Related papers (2024-05-27T08:39:38Z) - Patch Spatio-Temporal Relation Prediction for Video Anomaly Detection [19.643936110623653]
Video Anomaly Detection (VAD) aims to identify abnormalities within a specific context and timeframe.
Recent deep learning-based VAD models have shown promising results by generating high-resolution frames.
We propose a self-supervised learning approach for VAD through an inter-patch relationship prediction task.
arXiv Detail & Related papers (2024-03-28T03:07:16Z) - Transform-Equivariant Consistency Learning for Temporal Sentence
Grounding [66.10949751429781]
We introduce a novel Equivariant Consistency Regulation Learning framework to learn more discriminative representations for each video.
Our motivation comes from that the temporal boundary of the query-guided activity should be consistently predicted.
In particular, we devise a self-supervised consistency loss module to enhance the completeness and smoothness of the augmented video.
arXiv Detail & Related papers (2023-05-06T19:29:28Z) - Video Demoireing with Relation-Based Temporal Consistency [68.20281109859998]
Moire patterns, appearing as color distortions, severely degrade image and video qualities when filming a screen with digital cameras.
We study how to remove such undesirable moire patterns in videos, namely video demoireing.
arXiv Detail & Related papers (2022-04-06T17:45:38Z) - Learning to Associate Every Segment for Video Panoptic Segmentation [123.03617367709303]
We learn coarse segment-level matching and fine pixel-level matching together.
We show that our per-frame computation model can achieve new state-of-the-art results on Cityscapes-VPS and VIPER datasets.
arXiv Detail & Related papers (2021-06-17T13:06:24Z) - Understanding Road Layout from Videos as a Whole [82.30800791500869]
We formulate it as a top-view road attributes prediction problem and our goal is to predict these attributes for each frame both accurately and consistently.
We exploit the following three novel aspects: leveraging camera motions in videos, including context cuesand incorporating long-term video information.
arXiv Detail & Related papers (2020-07-02T00:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.