Clarifying Myths About the Relationship Between Shape Bias, Accuracy, and Robustness
- URL: http://arxiv.org/abs/2406.05006v1
- Date: Fri, 7 Jun 2024 15:21:00 GMT
- Title: Clarifying Myths About the Relationship Between Shape Bias, Accuracy, and Robustness
- Authors: Zahra Golpayegani, Patrick St-Amant, Nizar Bouguila,
- Abstract summary: Deep learning models can perform well when evaluated on images from the same distribution as the training set.
Deep learning models can perform well when evaluated on images from the same distribution as the training set.
Applying small blurrings to a model's input image and feeding the model with out-of-distribution (OOD) data can significantly drop the model's accuracy.
Data augmentation is one of the well-practiced methods to improve model robustness against OOD data.
- Score: 18.55761892159021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models can perform well when evaluated on images from the same distribution as the training set. However, applying small perturbations in the forms of noise, artifacts, occlusions, blurring, etc. to a model's input image and feeding the model with out-of-distribution (OOD) data can significantly drop the model's accuracy, making it not applicable to real-world scenarios. Data augmentation is one of the well-practiced methods to improve model robustness against OOD data; however, examining which augmentation type to choose and how it affects the OOD robustness remains understudied. There is a growing belief that augmenting datasets using data augmentations that improve a model's bias to shape-based features rather than texture-based features results in increased OOD robustness for Convolutional Neural Networks trained on the ImageNet-1K dataset. This is usually stated as ``an increase in the model's shape bias results in an increase in its OOD robustness". Based on this hypothesis, some works in the literature aim to find augmentations with higher effects on model shape bias and use those for data augmentation. By evaluating 39 types of data augmentations on a widely used OOD dataset, we demonstrate the impact of each data augmentation on the model's robustness to OOD data and further show that the mentioned hypothesis is not true; an increase in shape bias does not necessarily result in higher OOD robustness. By analyzing the results, we also find some biases in the ImageNet-1K dataset that can easily be reduced using proper data augmentation. Our evaluation results further show that there is not necessarily a trade-off between in-domain accuracy and OOD robustness, and choosing the proper augmentations can help increase both in-domain accuracy and OOD robustness simultaneously.
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
We investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation)
We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others.
These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent.
arXiv Detail & Related papers (2022-10-12T17:54:59Z) - Models Out of Line: A Fourier Lens on Distribution Shift Robustness [29.12208822285158]
Improving accuracy of deep neural networks (DNNs) on out-of-distribution (OOD) data is critical to an acceptance of deep learning (DL) in real world applications.
Recently, some promising approaches have been developed to improve OOD robustness.
There still is no clear understanding of the conditions on OOD data and model properties that are required to observe effective robustness.
arXiv Detail & Related papers (2022-07-08T18:05:58Z) - Harnessing Out-Of-Distribution Examples via Augmenting Content and Style [93.21258201360484]
Machine learning models are vulnerable to Out-Of-Distribution (OOD) examples.
This paper proposes a HOOD method that can leverage the content and style from each image instance to identify benign and malign OOD data.
Thanks to the proposed novel disentanglement and data augmentation techniques, HOOD can effectively deal with OOD examples in unknown and open environments.
arXiv Detail & Related papers (2022-07-07T08:48:59Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
Models that are more accurate on the out-of-distribution data relative to this baseline exhibit "effective robustness"
We find that models pre-trained on larger datasets exhibit effective robustness during training that vanishes at convergence.
We discuss several strategies for scaling effective robustness to the high-accuracy regime to improve the out-of-distribution accuracy of state-of-the-art models.
arXiv Detail & Related papers (2021-06-30T06:21:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.