The Expanding Scope of the Stability Gap: Unveiling its Presence in Joint Incremental Learning of Homogeneous Tasks
- URL: http://arxiv.org/abs/2406.05114v1
- Date: Fri, 7 Jun 2024 17:44:48 GMT
- Title: The Expanding Scope of the Stability Gap: Unveiling its Presence in Joint Incremental Learning of Homogeneous Tasks
- Authors: Sandesh Kamath, Albin Soutif-Cormerais, Joost van de Weijer, Bogdan Raducanu,
- Abstract summary: Recent research identified a temporary performance drop on previously learned tasks when transitioning to a new one.
We show that the stability gap also occurs when applying joint incremental training of homogeneous tasks.
- Score: 14.325370691984345
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent research identified a temporary performance drop on previously learned tasks when transitioning to a new one. This drop is called the stability gap and has great consequences for continual learning: it complicates the direct employment of continually learning since the worse-case performance at task-boundaries is dramatic, it limits its potential as an energy-efficient training paradigm, and finally, the stability drop could result in a reduced final performance of the algorithm. In this paper, we show that the stability gap also occurs when applying joint incremental training of homogeneous tasks. In this scenario, the learner continues training on the same data distribution and has access to all data from previous tasks. In addition, we show that in this scenario, there exists a low-loss linear path to the next minima, but that SGD optimization does not choose this path. We perform further analysis including a finer batch-wise analysis which could provide insights towards potential solution directions.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTR is a novel curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization.
We show CLUTR outperforms PAIRED, a principled and popular UED method, in terms of generalization and sample efficiency in the challenging CarRacing and navigation environments.
arXiv Detail & Related papers (2022-10-19T01:45:29Z) - Online Continual Learning via the Meta-learning Update with Multi-scale
Knowledge Distillation and Data Augmentation [4.109784267309124]
Continual learning aims to rapidly and continually learn the current task from a sequence of tasks.
One common limitation of this method is the data imbalance between the previous and current tasks.
We propose a novel framework called Meta-learning update via Multi-scale Knowledge Distillation and Data Augmentation.
arXiv Detail & Related papers (2022-09-12T10:03:53Z) - Balancing Stability and Plasticity through Advanced Null Space in
Continual Learning [77.94570903726856]
We propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks.
We also present a simple but effective method, intra-task distillation, to improve the performance of the current task.
Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
arXiv Detail & Related papers (2022-07-25T11:04:22Z) - Continual evaluation for lifelong learning: Identifying the stability
gap [35.99653845083381]
We show that a set of common state-of-the-art methods still suffers from substantial forgetting upon starting to learn new tasks.
We refer to this intriguing but potentially problematic phenomenon as the stability gap.
We establish a framework for continual evaluation that uses per-iteration evaluation and we define a new set of metrics to quantify worst-case performance.
arXiv Detail & Related papers (2022-05-26T15:56:08Z) - Towards Better Plasticity-Stability Trade-off in Incremental Learning: A
simple Linear Connector [8.13916229438606]
Plasticity-stability dilemma is a main problem for incremental learning.
We show that a simple averaging of two independently optimized optima of networks, null-space projection for past tasks and simple SGD for the current task, can attain a meaningful balance between preserving already learned knowledge and granting sufficient flexibility for learning a new task.
arXiv Detail & Related papers (2021-10-15T07:37:20Z) - Continuous Transition: Improving Sample Efficiency for Continuous
Control Problems via MixUp [119.69304125647785]
This paper introduces a concise yet powerful method to construct Continuous Transition.
Specifically, we propose to synthesize new transitions for training by linearly interpolating the consecutive transitions.
To keep the constructed transitions authentic, we also develop a discriminator to guide the construction process automatically.
arXiv Detail & Related papers (2020-11-30T01:20:23Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.