The Factorization Curse: Which Tokens You Predict Underlie the Reversal Curse and More
- URL: http://arxiv.org/abs/2406.05183v1
- Date: Fri, 7 Jun 2024 18:00:37 GMT
- Title: The Factorization Curse: Which Tokens You Predict Underlie the Reversal Curse and More
- Authors: Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, Mark Ibrahim,
- Abstract summary: We study the reversal curse, where models cannot recall information when probed in a different order than was encountered during training.
We find that the factorization curse is an inherent failure of the next-token prediction objective used in popular large language models.
Our results uncover a promising path forward: factorization-agnostic objectives can significantly mitigate the reversal curse and hint at improved knowledge storage and planning capabilities.
- Score: 27.731438642876114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today's best language models still struggle with hallucinations: factually incorrect generations, which impede their ability to reliably retrieve information seen during training. The reversal curse, where models cannot recall information when probed in a different order than was encountered during training, exemplifies this in information retrieval. We reframe the reversal curse as a factorization curse - a failure of models to learn the same joint distribution under different factorizations. Through a series of controlled experiments with increasing levels of realism including WikiReversal, a setting we introduce to closely simulate a knowledge intensive finetuning task, we find that the factorization curse is an inherent failure of the next-token prediction objective used in popular large language models. Moreover, we demonstrate reliable information retrieval cannot be solved with scale, reversed tokens, or even naive bidirectional-attention training. Consequently, various approaches to finetuning on specialized data would necessarily provide mixed results on downstream tasks, unless the model has already seen the right sequence of tokens. Across five tasks of varying levels of complexity, our results uncover a promising path forward: factorization-agnostic objectives can significantly mitigate the reversal curse and hint at improved knowledge storage and planning capabilities.
Related papers
- Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - Mitigating Reversal Curse in Large Language Models via Semantic-aware Permutation Training [57.771940716189114]
We show that large language models (LLMs) suffer from the "reversal curse"
The root cause of the reversal curse lies in the different word order between the training and inference stage.
We propose Semantic-aware Permutation Training (SPT) to address this issue.
arXiv Detail & Related papers (2024-03-01T18:55:20Z) - MiLe Loss: a New Loss for Mitigating the Bias of Learning Difficulties in Generative Language Models [40.992566245706996]
We propose a MiLe Loss function for mitigating the bias of learning difficulties with tokens.
We train generative language models at different scales of 468M, 1.2B, and 6.7B parameters.
Experiments reveal that models incorporating the proposed MiLe Loss can gain consistent performance improvement on downstream benchmarks.
arXiv Detail & Related papers (2023-10-30T13:33:21Z) - Inverse Scaling: When Bigger Isn't Better [80.42834197416444]
Large language models (LMs) show predictable improvements to overall loss with increased scale.
We present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale.
arXiv Detail & Related papers (2023-06-15T20:11:23Z) - Mitigating Temporal Misalignment by Discarding Outdated Facts [58.620269228776294]
Large language models are often used under temporal misalignment, tasked with answering questions about the present.
We propose fact duration prediction: the task of predicting how long a given fact will remain true.
Our data and code are released publicly at https://github.com/mikejqzhang/mitigating_misalignment.
arXiv Detail & Related papers (2023-05-24T07:30:08Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
We find a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty.
This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, when uncertain about a continuation.
We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty.
arXiv Detail & Related papers (2022-10-24T13:30:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.