Markov chain Monte Carlo without evaluating the target: an auxiliary variable approach
- URL: http://arxiv.org/abs/2406.05242v2
- Date: Thu, 27 Jun 2024 20:34:58 GMT
- Title: Markov chain Monte Carlo without evaluating the target: an auxiliary variable approach
- Authors: Wei Yuan, Guanyang Wang,
- Abstract summary: Markov chain Monte Carlo algorithms can be unified under a simple common procedure.
We develop the theory of the new framework, applying it to existing algorithms to simplify and extend their results.
Several new algorithms emerge from this framework, with improved performance demonstrated on both synthetic and real datasets.
- Score: 9.426953273977496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In sampling tasks, it is common for target distributions to be known up to a normalising constant. However, in many situations, evaluating even the unnormalised distribution can be costly or infeasible. This issue arises in scenarios such as sampling from the Bayesian posterior for tall datasets and the 'doubly-intractable' distributions. In this paper, we begin by observing that seemingly different Markov chain Monte Carlo (MCMC) algorithms, such as the exchange algorithm, PoissonMH, and TunaMH, can be unified under a simple common procedure. We then extend this procedure into a novel framework that allows the use of auxiliary variables in both the proposal and acceptance-rejection steps. We develop the theory of the new framework, applying it to existing algorithms to simplify and extend their results. Several new algorithms emerge from this framework, with improved performance demonstrated on both synthetic and real datasets.
Related papers
- Scalable Structure Learning for Sparse Context-Specific Systems [0.0]
We present an algorithm for learning context-specific models that scales to hundreds of variables.
Our method is shown to perform well on synthetic data and real world examples.
arXiv Detail & Related papers (2024-02-12T16:28:52Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set.
Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions.
This paper proposes a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain.
arXiv Detail & Related papers (2023-05-20T09:31:35Z) - Approximate sampling and estimation of partition functions using neural
networks [0.0]
We show how variational autoencoders (VAEs) can be applied to this task.
We invert the logic and train the VAE to fit a simple and tractable distribution, on the assumption of a complex and intractable latent distribution, specified up to normalization.
This procedure constructs approximations without the use of training data or Markov chain Monte Carlo sampling.
arXiv Detail & Related papers (2022-09-21T15:16:45Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
Recursive auxiliary-variable inference (RAVI) is a new framework for exploiting flexible proposals.
RAVI generalizes and unifies several existing methods for inference with expressive expressive families.
We show RAVI's design framework and theorems by using them to analyze and improve upon Salimans et al.'s Markov Chain Variational Inference.
arXiv Detail & Related papers (2022-03-05T23:52:40Z) - Direct sampling of projected entangled-pair states [0.0]
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions.
We propose a sampling algorithm that generates independent samples from a PEPS, bypassing all problems related to finite autocorrelation times.
arXiv Detail & Related papers (2021-09-15T15:09:20Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.