Markov chain Monte Carlo without evaluating the target: an auxiliary variable approach
- URL: http://arxiv.org/abs/2406.05242v3
- Date: Wed, 05 Feb 2025 17:35:18 GMT
- Title: Markov chain Monte Carlo without evaluating the target: an auxiliary variable approach
- Authors: Wei Yuan, Guanyang Wang,
- Abstract summary: In sampling tasks, it is common for target distributions to be known up to a normalizing constant.
In many situations, even evaluating the unnormalized distribution can be costly or infeasible.
We develop a novel framework that allows the use of auxiliary variables in both the proposal and the acceptance-rejection step.
- Score: 9.426953273977496
- License:
- Abstract: In sampling tasks, it is common for target distributions to be known up to a normalizing constant. However, in many situations, even evaluating the unnormalized distribution can be costly or infeasible. This issue arises in scenarios such as sampling from the Bayesian posterior for tall datasets and the 'doubly-intractable' distributions. In this paper, we begin by observing that seemingly different Markov chain Monte Carlo (MCMC) algorithms, such as the exchange algorithm, PoissonMH, and TunaMH, can be unified under a simple common procedure. We then extend this procedure into a novel framework that allows the use of auxiliary variables in both the proposal and the acceptance-rejection step. Several new MCMC algorithms emerge from this framework that utilize estimated gradients to guide the proposal moves. They have demonstrated significantly better performance than existing methods on both synthetic and real datasets. Additionally, we develop the theory of the new framework and apply it to existing algorithms to simplify and extend their results.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Learning Distributions via Monte-Carlo Marginalization [9.131712404284876]
We propose a novel method to learn intractable distributions from their samples.
The Monte-Carlo Marginalization (MCMarg) is proposed to address this issue.
The proposed approach is a powerful tool to learn complex distributions and the entire process is differentiable.
arXiv Detail & Related papers (2023-08-11T19:08:06Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set.
Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions.
This paper proposes a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain.
arXiv Detail & Related papers (2023-05-20T09:31:35Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
Recursive auxiliary-variable inference (RAVI) is a new framework for exploiting flexible proposals.
RAVI generalizes and unifies several existing methods for inference with expressive expressive families.
We show RAVI's design framework and theorems by using them to analyze and improve upon Salimans et al.'s Markov Chain Variational Inference.
arXiv Detail & Related papers (2022-03-05T23:52:40Z) - MCMC-driven importance samplers [0.0]
We focus on LAIS, a class of adaptive importance samplers, where Monte Carlo algorithms are employed to drive an underlying multiple importance sampling scheme.
The modular nature of LAIS allows for different possible choices in the upper and lower layers, that will have different performance and computational costs.
Different variants are essential if we aim to address computational challenges arising in real-world applications.
arXiv Detail & Related papers (2021-05-06T10:59:02Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.