Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization
- URL: http://arxiv.org/abs/2406.05372v1
- Date: Sat, 8 Jun 2024 06:45:19 GMT
- Title: Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization
- Authors: Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie J. Su,
- Abstract summary: Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data.
This paper investigates this issue through the lens of Rademacher complexity.
We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings.
- Score: 29.044914673801856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width $m$ of the DNNs or the dimension $d$ of the data, with an extra factor of at least $\mathcal{O}(\sqrt{m})$ or $\mathcal{O}(\sqrt{d})$. This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being $\mathcal{O}(\ln(dm))$. The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the \emph{uniform covering number}, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.
Related papers
- Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
We study the generalized low-rank matrix bandit problem, proposed in citelu2021low under the Generalized Linear Model (GLM) framework.
To overcome the computational infeasibility and theoretical restrain of existing algorithms, we first propose the G-ESTT framework.
We show that G-ESTT can achieve the $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret while G-ESTS can achineve the $tildeO
arXiv Detail & Related papers (2024-01-14T14:14:19Z) - PAC-Bayesian Spectrally-Normalized Bounds for Adversarially Robust
Generalization [25.272738030198862]
Deep neural networks (DNNs) are vulnerable to adversarial attacks.
adversarially robust generalization is crucial in establishing defense algorithms against adversarial attacks.
This paper focuses on norm-based perturbation complexity, based on a PAC-Bayes approach.
arXiv Detail & Related papers (2023-10-09T22:20:27Z) - Adversarial Contextual Bandits Go Kernelized [21.007410990554522]
We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a Hilbert kernel space.
We propose a new optimistically biased estimator for the loss functions and reproducing near-optimal regret guarantees.
arXiv Detail & Related papers (2023-10-02T19:59:39Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Adversarial Rademacher Complexity of Deep Neural Networks [29.571059373990888]
A robust model shall perform well on both the perturbed training data and the unseen perturbed test data.
We provide the first bound of adversarial Rademacher complexity of deep neural networks.
arXiv Detail & Related papers (2022-11-27T23:24:37Z) - Generalization Bounds for Stochastic Gradient Descent via Localized
$\varepsilon$-Covers [16.618918548497223]
We propose a new covering technique localized for the trajectories of SGD.
This localization provides an algorithm-specific clustering measured by the bounds number.
We derive these results in various contexts and improve the known state-of-the-art label rates.
arXiv Detail & Related papers (2022-09-19T12:11:07Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
We study the linear contextual bandit problem in the presence of adversarial corruption.
We present a variance-aware algorithm that is adaptive to the level of adversarial contamination $C$.
arXiv Detail & Related papers (2021-10-25T02:53:24Z) - Towards Defending Multiple $\ell_p$-norm Bounded Adversarial
Perturbations via Gated Batch Normalization [120.99395850108422]
Existing adversarial defenses typically improve model robustness against individual specific perturbations.
Some recent methods improve model robustness against adversarial attacks in multiple $ell_p$ balls, but their performance against each perturbation type is still far from satisfactory.
We propose Gated Batch Normalization (GBN) to adversarially train a perturbation-invariant predictor for defending multiple $ell_p bounded adversarial perturbations.
arXiv Detail & Related papers (2020-12-03T02:26:01Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
We study learning in contextual bandits with the help of loss predictors.
We show that the optimal regret is $mathcalO(minsqrtT, sqrtmathcalETfrac13)$ when $mathcalE$ is known.
arXiv Detail & Related papers (2020-03-04T07:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.