Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL
- URL: http://arxiv.org/abs/2406.05427v1
- Date: Sat, 8 Jun 2024 10:12:00 GMT
- Title: Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL
- Authors: Qi Lv, Xiang Deng, Gongwei Chen, Michael Yu Wang, Liqiang Nie,
- Abstract summary: Decision Mamba is a novel multi-grained state space model with a self-evolving policy learning strategy.
To mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization.
The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations.
- Score: 57.202733701029594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While the conditional sequence modeling with the transformer architecture has demonstrated its effectiveness in dealing with offline reinforcement learning (RL) tasks, it is struggle to handle out-of-distribution states and actions. Existing work attempts to address this issue by data augmentation with the learned policy or adding extra constraints with the value-based RL algorithm. However, these studies still fail to overcome the following challenges: (1) insufficiently utilizing the historical temporal information among inter-steps, (2) overlooking the local intrastep relationships among states, actions and return-to-gos (RTGs), (3) overfitting suboptimal trajectories with noisy labels. To address these challenges, we propose Decision Mamba (DM), a novel multi-grained state space model (SSM) with a self-evolving policy learning strategy. DM explicitly models the historical hidden state to extract the temporal information by using the mamba architecture. To capture the relationship among state-action-RTG triplets, a fine-grained SSM module is designed and integrated into the original coarse-grained SSM in mamba, resulting in a novel mamba architecture tailored for offline RL. Finally, to mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization. The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations. Extensive experiments on various tasks show that DM outperforms other baselines substantially.
Related papers
- Mamba as Decision Maker: Exploring Multi-scale Sequence Modeling in Offline Reinforcement Learning [16.23977055134524]
We propose a novel action predictor sequence, named Mamba Decision Maker (MambaDM)
MambaDM is expected to be a promising alternative for sequence modeling paradigms, owing to its efficient modeling of multi-scale dependencies.
This paper delves into the sequence modeling capabilities of MambaDM in the RL domain, paving the way for future advancements.
arXiv Detail & Related papers (2024-06-04T06:49:18Z) - Theoretical Foundations of Deep Selective State-Space Models [13.971499161967083]
Deep SSMs demonstrate outstanding performance across a diverse set of domains.
Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states.
We show that when random linear recurrences are equipped with simple input-controlled transitions, then the hidden state is provably a low-dimensional projection of a powerful mathematical object.
arXiv Detail & Related papers (2024-02-29T11:20:16Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Diffusion Policies for Out-of-Distribution Generalization in Offline
Reinforcement Learning [1.9336815376402723]
offline RL methods leverage previous experiences to learn better policies than the behavior policy used for data collection.
However, offline RL algorithms face challenges in handling distribution shifts and effectively representing policies due to the lack of online interaction during training.
We introduce a novel method named State Reconstruction for Diffusion Policies (SRDP), incorporating state reconstruction feature learning in the recent class of diffusion policies.
arXiv Detail & Related papers (2023-07-10T17:34:23Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
offline reinforcement learning aims to train a policy on a pre-recorded and fixed dataset without any additional environment interactions.
We build upon recent works on learning policies in latent action spaces and use a special form of Normalizing Flows for constructing a generative model.
We evaluate our method on various locomotion and navigation tasks, demonstrating that our approach outperforms recently proposed algorithms.
arXiv Detail & Related papers (2022-11-20T21:57:10Z) - Mutual Information Regularized Offline Reinforcement Learning [76.05299071490913]
We propose a novel MISA framework to approach offline RL from the perspective of Mutual Information between States and Actions in the dataset.
We show that optimizing this lower bound is equivalent to maximizing the likelihood of a one-step improved policy on the offline dataset.
We introduce 3 different variants of MISA, and empirically demonstrate that tighter mutual information lower bound gives better offline RL performance.
arXiv Detail & Related papers (2022-10-14T03:22:43Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.