Information-Theoretic Thresholds for the Alignments of Partially Correlated Graphs
- URL: http://arxiv.org/abs/2406.05428v1
- Date: Sat, 8 Jun 2024 10:17:42 GMT
- Title: Information-Theoretic Thresholds for the Alignments of Partially Correlated Graphs
- Authors: Dong Huang, Xianwen Song, Pengkun Yang,
- Abstract summary: ErdHos-R'enyi graphs model, wherein a pair of induced subgraphs with a certain number are correlated.
We prove that there exists an optimal rate for partial recovery for the number of correlated nodes.
In the proof of possibility results, we propose correlated functional digraphs, which partition the edges of the intersection graph into two types of components.
- Score: 7.001453437549302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the problem of recovering the hidden vertex correspondence between two correlated random graphs. We propose the partially correlated Erd\H{o}s-R\'enyi graphs model, wherein a pair of induced subgraphs with a certain number are correlated. We investigate the information-theoretic thresholds for recovering the latent correlated subgraphs and the hidden vertex correspondence. We prove that there exists an optimal rate for partial recovery for the number of correlated nodes, above which one can correctly match a fraction of vertices and below which correctly matching any positive fraction is impossible, and we also derive an optimal rate for exact recovery. In the proof of possibility results, we propose correlated functional digraphs, which partition the edges of the intersection graph into two types of components, and bound the error probability by lower-order cumulant generating functions. The proof of impossibility results build upon the generalized Fano's inequality and the recovery thresholds settled in correlated Erd\H{o}s-R\'enyi graphs model.
Related papers
- Matching Correlated Inhomogeneous Random Graphs using the $k$-core
Estimator [5.685589351789462]
We study the so-called emph$k$-core estimator, which outputs a correspondence that induces a large, common subgraph of both graphs.
We specialize our general framework to derive new results on exact and partial recovery in correlated block models, correlated Chung-Lu geometric graphs, and correlated random graphs.
arXiv Detail & Related papers (2023-02-10T18:21:35Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We develop this idea in a concrete non-parametric method that we call Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We derive convergence rates for our collaborative approach that highlights the role played by variables such as the number of available observations per node, the size of the graph, and how accurately the graph structure encodes the similarity between tasks.
arXiv Detail & Related papers (2022-05-28T15:37:03Z) - Correlated Stochastic Block Models: Exact Graph Matching with
Applications to Recovering Communities [2.7920304852537527]
We consider the task of learning latent community structure from multiple correlated networks.
We show how one can exactly recover the latent communities using multiple correlated graphs in parameter regimes.
arXiv Detail & Related papers (2021-07-14T15:27:15Z) - Impossibility of Partial Recovery in the Graph Alignment Problem [3.5880535198436156]
We show an average-case and noisy version of the well-known NP-hard graph isomorphism problem.
For the correlated Erd"os-R'enyi model, we prove an impossibility result for partial recovery in the sparse regime.
Our bound is tight in the noiseless case (the graph isomorphism problem) and we conjecture that it is still tight with noise.
arXiv Detail & Related papers (2021-02-04T15:26:48Z) - Settling the Sharp Reconstruction Thresholds of Random Graph Matching [19.54246087326288]
We study the problem of recovering the hidden correspondence between two edge-correlated random graphs.
For dense graphs with $p=n-o(1)$, we prove that there exists a sharp threshold.
For sparse ErdHos-R'enyi graphs with $p=n-Theta(1)$, we show that the all-or-nothing phenomenon no longer holds.
arXiv Detail & Related papers (2021-01-29T21:49:50Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - Testing correlation of unlabeled random graphs [18.08210501570919]
We study the problem of detecting the edge correlation between two random graphs with $n$ unlabeled nodes.
This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated.
Under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null.
arXiv Detail & Related papers (2020-08-23T19:19:45Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.