Do LLMs Recognize me, When I is not me: Assessment of LLMs Understanding of Turkish Indexical Pronouns in Indexical Shift Contexts
- URL: http://arxiv.org/abs/2406.05569v1
- Date: Sat, 8 Jun 2024 20:30:53 GMT
- Title: Do LLMs Recognize me, When I is not me: Assessment of LLMs Understanding of Turkish Indexical Pronouns in Indexical Shift Contexts
- Authors: Metehan Oğuz, Yusuf Umut Ciftci, Yavuz Faruk Bakman,
- Abstract summary: This study focuses on the Indexical Shift problem in Turkish.
The Indexical Shift problem involves resolving pronouns in indexical shift contexts, a grammatical challenge not present in high-resource languages like English.
We present the first study examining indexical shift in any language, releasing a Turkish dataset specifically designed for this purpose.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown impressive capabilities in tasks such as machine translation, text summarization, question answering, and solving complex mathematical problems. However, their primary training on data-rich languages like English limits their performance in low-resource languages. This study addresses this gap by focusing on the Indexical Shift problem in Turkish. The Indexical Shift problem involves resolving pronouns in indexical shift contexts, a grammatical challenge not present in high-resource languages like English. We present the first study examining indexical shift in any language, releasing a Turkish dataset specifically designed for this purpose. Our Indexical Shift Dataset consists of 156 multiple-choice questions, each annotated with necessary linguistic details, to evaluate LLMs in a few-shot setting. We evaluate recent multilingual LLMs, including GPT-4, GPT-3.5, Cohere-AYA, Trendyol-LLM, and Turkcell-LLM, using this dataset. Our analysis reveals that even advanced models like GPT-4 struggle with the grammatical nuances of indexical shift in Turkish, achieving only moderate performance. These findings underscore the need for focused research on the grammatical challenges posed by low-resource languages. We released the dataset and code \href{https://anonymous.4open.science/r/indexical_shift_llm-E1B4} {here}.
Related papers
- On Limitations of LLM as Annotator for Low Resource Languages [0.4194295877935868]
Low-resource languages face significant challenges due to the lack of sufficient linguistic data, resources, and tools for tasks such as supervised learning, annotation, and classification.
This shortage hinders the development of accurate models and datasets, making it difficult to perform critical NLP tasks like sentiment analysis or hate speech detection.
To bridge this gap, Large Language Models (LLMs) present an opportunity for potential annotators, capable of generating datasets and resources for these underrepresented languages.
arXiv Detail & Related papers (2024-11-26T17:55:37Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish [54.51310112013655]
We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU.
TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula.
We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models.
arXiv Detail & Related papers (2024-07-17T08:28:55Z) - CT-Eval: Benchmarking Chinese Text-to-Table Performance in Large Language Models [36.82189550072201]
Existing text-to-table datasets are typically oriented English.
Large language models (LLMs) have shown great success as general task solvers in multi-lingual settings.
We propose a Chinese text-to-table dataset, CT-Eval, to benchmark LLMs on this task.
arXiv Detail & Related papers (2024-05-20T16:58:02Z) - Salute the Classic: Revisiting Challenges of Machine Translation in the
Age of Large Language Models [91.6543868677356]
The evolution of Neural Machine Translation has been influenced by six core challenges.
These challenges include domain mismatch, amount of parallel data, rare word prediction, translation of long sentences, attention model as word alignment, and sub-optimal beam search.
This study revisits these challenges, offering insights into their ongoing relevance in the context of advanced Large Language Models.
arXiv Detail & Related papers (2024-01-16T13:30:09Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.