Beat: Bi-directional One-to-Many Embedding Alignment for Text-based Person Retrieval
- URL: http://arxiv.org/abs/2406.05620v1
- Date: Sun, 9 Jun 2024 03:06:55 GMT
- Title: Beat: Bi-directional One-to-Many Embedding Alignment for Text-based Person Retrieval
- Authors: Yiwei Ma, Xiaoshuai Sun, Jiayi Ji, Guannan Jiang, Weilin Zhuang, Rongrong Ji,
- Abstract summary: Text-based person retrieval (TPR) is a challenging task that involves retrieving a specific individual based on a textual description.
Previous methods have attempted to align text and image samples in a modal-shared space.
We propose an effective bi-directional one-to-many embedding paradigm that offers a clear optimization direction for each sample.
- Score: 66.61856014573742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-based person retrieval (TPR) is a challenging task that involves retrieving a specific individual based on a textual description. Despite considerable efforts to bridge the gap between vision and language, the significant differences between these modalities continue to pose a challenge. Previous methods have attempted to align text and image samples in a modal-shared space, but they face uncertainties in optimization directions due to the movable features of both modalities and the failure to account for one-to-many relationships of image-text pairs in TPR datasets. To address this issue, we propose an effective bi-directional one-to-many embedding paradigm that offers a clear optimization direction for each sample, thus mitigating the optimization problem. Additionally, this embedding scheme generates multiple features for each sample without introducing trainable parameters, making it easier to align with several positive samples. Based on this paradigm, we propose a novel Bi-directional one-to-many Embedding Alignment (Beat) model to address the TPR task. Our experimental results demonstrate that the proposed Beat model achieves state-of-the-art performance on three popular TPR datasets, including CUHK-PEDES (65.61 R@1), ICFG-PEDES (58.25 R@1), and RSTPReID (48.10 R@1). Furthermore, additional experiments on MS-COCO, CUB, and Flowers datasets further demonstrate the potential of Beat to be applied to other image-text retrieval tasks.
Related papers
- Debiasing Vison-Language Models with Text-Only Training [15.069736314663352]
We propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
To address the limitations, we propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
arXiv Detail & Related papers (2024-10-12T04:34:46Z) - Latent Space Disentanglement in Diffusion Transformers Enables Zero-shot Fine-grained Semantic Editing [4.948910649137149]
Diffusion Transformers (DiTs) have achieved remarkable success in diverse and high-quality text-to-image(T2I) generation.
We investigate how text and image latents individually and jointly contribute to the semantics of generated images.
We propose a simple and effective Extract-Manipulate-Sample framework for zero-shot fine-grained image editing.
arXiv Detail & Related papers (2024-08-23T19:00:52Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Text-based Person Search without Parallel Image-Text Data [52.63433741872629]
Text-based person search (TBPS) aims to retrieve the images of the target person from a large image gallery based on a given natural language description.
Existing methods are dominated by training models with parallel image-text pairs, which are very costly to collect.
In this paper, we make the first attempt to explore TBPS without parallel image-text data.
arXiv Detail & Related papers (2023-05-22T12:13:08Z) - Text-based Person Search in Full Images via Semantic-Driven Proposal
Generation [42.25611020956918]
We propose a new end-to-end learning framework which jointly optimize the pedestrian detection, identification and visual-semantic feature embedding tasks.
To take full advantage of the query text, the semantic features are leveraged to instruct the Region Proposal Network to pay more attention to the text-described proposals.
arXiv Detail & Related papers (2021-09-27T11:42:40Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
We address weakly supervised semantic matching based on a deep network.
We explicitly estimate the foreground regions to suppress the effect of background clutter.
We develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent.
arXiv Detail & Related papers (2020-03-31T22:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.