An Investigation of Noise Robustness for Flow-Matching-Based Zero-Shot TTS
- URL: http://arxiv.org/abs/2406.05699v1
- Date: Sun, 9 Jun 2024 08:51:50 GMT
- Title: An Investigation of Noise Robustness for Flow-Matching-Based Zero-Shot TTS
- Authors: Xiaofei Wang, Sefik Emre Eskimez, Manthan Thakker, Hemin Yang, Zirun Zhu, Min Tang, Yufei Xia, Jinzhu Li, Sheng Zhao, Jinyu Li, Naoyuki Kanda,
- Abstract summary: Zero-shot text-to-speech (TTS) systems are capable of synthesizing any speaker's voice from a short audio prompt.
The quality of the generated speech significantly deteriorates when the audio prompt contains noise.
In this paper, we explore various strategies to enhance the quality of audio generated from noisy audio prompts.
- Score: 43.84833978193758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, zero-shot text-to-speech (TTS) systems, capable of synthesizing any speaker's voice from a short audio prompt, have made rapid advancements. However, the quality of the generated speech significantly deteriorates when the audio prompt contains noise, and limited research has been conducted to address this issue. In this paper, we explored various strategies to enhance the quality of audio generated from noisy audio prompts within the context of flow-matching-based zero-shot TTS. Our investigation includes comprehensive training strategies: unsupervised pre-training with masked speech denoising, multi-speaker detection and DNSMOS-based data filtering on the pre-training data, and fine-tuning with random noise mixing. The results of our experiments demonstrate significant improvements in intelligibility, speaker similarity, and overall audio quality compared to the approach of applying speech enhancement to the audio prompt.
Related papers
- Noise-robust zero-shot text-to-speech synthesis conditioned on
self-supervised speech-representation model with adapters [47.75276947690528]
The zero-shot text-to-speech (TTS) method can reproduce speaker characteristics very accurately.
However, this approach suffers from degradation in speech synthesis quality when the reference speech contains noise.
In this paper, we propose a noise-robust zero-shot TTS method.
arXiv Detail & Related papers (2024-01-10T12:21:21Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
We present AdVerb, a novel audio-visual dereverberation framework.
It uses visual cues in addition to the reverberant sound to estimate clean audio.
arXiv Detail & Related papers (2023-08-23T18:20:59Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
We propose a novel audio-visual speech enhancement framework for high-fidelity telecommunications in AR/VR.
Our approach leverages audio-visual speech cues to generate the codes of a neural speech, enabling efficient synthesis of clean, realistic speech from noisy signals.
arXiv Detail & Related papers (2022-03-31T17:57:10Z) - Distribution augmentation for low-resource expressive text-to-speech [18.553812159109253]
This paper presents a novel data augmentation technique for text-to-speech (TTS)
It allows to generate new (text, audio) training examples without requiring any additional data.
arXiv Detail & Related papers (2022-02-13T21:19:31Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
Noise robustness is essential for deploying automatic speech recognition systems in real-world environments.
We employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition.
We achieve comparable performance to the best supervised approach reported with only 16% of labeled data.
arXiv Detail & Related papers (2021-10-28T20:39:02Z) - Text-to-speech for the hearing impaired [0.0]
Text-to-speech (TTS) systems can compensate for a hearing loss at the source rather than correcting for it at the receiving end.
We propose an algorithm that restores loudness to normal perception at a high resolution in time, frequency and level.
arXiv Detail & Related papers (2020-12-03T18:52:03Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z) - Adversarial Feature Learning and Unsupervised Clustering based Speech
Synthesis for Found Data with Acoustic and Textual Noise [18.135965605011105]
Attention-based sequence-to-sequence (seq2seq) speech synthesis has achieved extraordinary performance.
A studio-quality corpus with manual transcription is necessary to train such seq2seq systems.
We propose an approach to build high-quality and stable seq2seq based speech synthesis system using challenging found data.
arXiv Detail & Related papers (2020-04-28T15:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.