ProFeAT: Projected Feature Adversarial Training for Self-Supervised Learning of Robust Representations
- URL: http://arxiv.org/abs/2406.05796v1
- Date: Sun, 9 Jun 2024 14:20:46 GMT
- Title: ProFeAT: Projected Feature Adversarial Training for Self-Supervised Learning of Robust Representations
- Authors: Sravanti Addepalli, Priyam Dey, R. Venkatesh Babu,
- Abstract summary: The need for abundant labelled data in supervised Adversarial Training (AT) has prompted the use of Self-Supervised Learning (SSL) techniques with AT.
The direct application of existing SSL methods to adversarial training has been sub-optimal due to the increased training complexity of combining SSL with AT.
We propose appropriate attack and defense losses at the feature and projector, alongside a combination of weak and strong augmentations for the teacher and student respectively.
- Score: 35.68752612346952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need for abundant labelled data in supervised Adversarial Training (AT) has prompted the use of Self-Supervised Learning (SSL) techniques with AT. However, the direct application of existing SSL methods to adversarial training has been sub-optimal due to the increased training complexity of combining SSL with AT. A recent approach, DeACL, mitigates this by utilizing supervision from a standard SSL teacher in a distillation setting, to mimic supervised AT. However, we find that there is still a large performance gap when compared to supervised adversarial training, specifically on larger models. In this work, investigate the key reason for this gap and propose Projected Feature Adversarial Training (ProFeAT) to bridge the same. We show that the sub-optimal distillation performance is a result of mismatch in training objectives of the teacher and student, and propose to use a projection head at the student, that allows it to leverage weak supervision from the teacher while also being able to learn adversarially robust representations that are distinct from the teacher. We further propose appropriate attack and defense losses at the feature and projector, alongside a combination of weak and strong augmentations for the teacher and student respectively, to improve the training data diversity without increasing the training complexity. Through extensive experiments on several benchmark datasets and models, we demonstrate significant improvements in both clean and robust accuracy when compared to existing SSL-AT methods, setting a new state-of-the-art. We further report on-par/ improved performance when compared to TRADES, a popular supervised-AT method.
Related papers
- On the Effectiveness of Supervision in Asymmetric Non-Contrastive Learning [5.123232962822044]
asymmetric non-contrastive learning (ANCL) often outperforms its contrastive learning counterpart in self-supervised representation learning.
We study ANCL for supervised representation learning, coined SupSiam and SupBYOL, leveraging labels in ANCL to achieve better representations.
Our analysis reveals that providing supervision to ANCL reduces intra-class variance, and the contribution of supervision should be adjusted to achieve the best performance.
arXiv Detail & Related papers (2024-06-16T06:43:15Z) - BECLR: Batch Enhanced Contrastive Few-Shot Learning [1.450405446885067]
Unsupervised few-shot learning aspires to bridge this gap by discarding the reliance on annotations at training time.
We propose a novel Dynamic Clustered mEmory (DyCE) module to promote a highly separable latent representation space.
We then tackle the, somehow overlooked yet critical, issue of sample bias at the few-shot inference stage.
arXiv Detail & Related papers (2024-02-04T10:52:43Z) - Mitigating Accuracy-Robustness Trade-off via Balanced Multi-Teacher Adversarial Distillation [12.39860047886679]
Adversarial Training is a practical approach for improving the robustness of deep neural networks against adversarial attacks.
We introduce Balanced Multi-Teacher Adversarial Robustness Distillation (B-MTARD) to guide the model's Adversarial Training process.
B-MTARD outperforms the state-of-the-art methods against various adversarial attacks.
arXiv Detail & Related papers (2023-06-28T12:47:01Z) - Effective Targeted Attacks for Adversarial Self-Supervised Learning [58.14233572578723]
unsupervised adversarial training (AT) has been highlighted as a means of achieving robustness in models without any label information.
We propose a novel positive mining for targeted adversarial attack to generate effective adversaries for adversarial SSL frameworks.
Our method demonstrates significant enhancements in robustness when applied to non-contrastive SSL frameworks, and less but consistent robustness improvements with contrastive SSL frameworks.
arXiv Detail & Related papers (2022-10-19T11:43:39Z) - Decoupled Adversarial Contrastive Learning for Self-supervised
Adversarial Robustness [69.39073806630583]
Adversarial training (AT) for robust representation learning and self-supervised learning (SSL) for unsupervised representation learning are two active research fields.
We propose a two-stage framework termed Decoupled Adversarial Contrastive Learning (DeACL)
arXiv Detail & Related papers (2022-07-22T06:30:44Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? [99.4914671654374]
We propose AdvCL, a novel adversarial contrastive pretraining framework.
We show that AdvCL is able to enhance cross-task robustness transferability without loss of model accuracy and finetuning efficiency.
arXiv Detail & Related papers (2021-11-01T17:59:43Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.