Self-Distilled Disentangled Learning for Counterfactual Prediction
- URL: http://arxiv.org/abs/2406.05855v2
- Date: Fri, 14 Jun 2024 06:30:22 GMT
- Title: Self-Distilled Disentangled Learning for Counterfactual Prediction
- Authors: Xinshu Li, Mingming Gong, Lina Yao,
- Abstract summary: We propose the Self-Distilled Disentanglement framework, known as $SD2$.
Grounded in information theory, it ensures theoretically sound independent disentangled representations without intricate mutual information estimator designs.
Our experiments, conducted on both synthetic and real-world datasets, confirm the effectiveness of our approach.
- Score: 49.84163147971955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancements in disentangled representation learning significantly enhance the accuracy of counterfactual predictions by granting precise control over instrumental variables, confounders, and adjustable variables. An appealing method for achieving the independent separation of these factors is mutual information minimization, a task that presents challenges in numerous machine learning scenarios, especially within high-dimensional spaces. To circumvent this challenge, we propose the Self-Distilled Disentanglement framework, referred to as $SD^2$. Grounded in information theory, it ensures theoretically sound independent disentangled representations without intricate mutual information estimator designs for high-dimensional representations. Our comprehensive experiments, conducted on both synthetic and real-world datasets, confirms the effectiveness of our approach in facilitating counterfactual inference in the presence of both observed and unobserved confounders.
Related papers
- EXAGREE: Towards Explanation Agreement in Explainable Machine Learning [0.0]
Explanations in machine learning are critical for trust, transparency, and fairness.
We introduce a novel framework, EXplanation AGREEment, to bridge diverse interpretations in explainable machine learning.
arXiv Detail & Related papers (2024-11-04T10:28:38Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - Stochastic Vision Transformers with Wasserstein Distance-Aware Attention [8.407731308079025]
Self-supervised learning is one of the most promising approaches to acquiring knowledge from limited labeled data.
We introduce a new vision transformer that integrates uncertainty and distance awareness into self-supervised learning pipelines.
Our proposed method achieves superior accuracy and calibration, surpassing the self-supervised baseline in a wide range of experiments on a variety of datasets.
arXiv Detail & Related papers (2023-11-30T15:53:37Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Unveiling the Potential of Probabilistic Embeddings in Self-Supervised
Learning [4.124934010794795]
Self-supervised learning has played a pivotal role in advancing machine learning by allowing models to acquire meaningful representations from unlabeled data.
We investigate the impact of probabilistic modeling on the information bottleneck, shedding light on a trade-off between compression and preservation of information in both representation and loss space.
Our findings suggest that introducing an additional bottleneck in the loss space can significantly enhance the ability to detect out-of-distribution examples.
arXiv Detail & Related papers (2023-10-27T12:01:16Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.