Tuning-Free Visual Customization via View Iterative Self-Attention Control
- URL: http://arxiv.org/abs/2406.06258v2
- Date: Tue, 11 Jun 2024 03:06:14 GMT
- Title: Tuning-Free Visual Customization via View Iterative Self-Attention Control
- Authors: Xiaojie Li, Chenghao Gu, Shuzhao Xie, Yunpeng Bai, Weixiang Zhang, Zhi Wang,
- Abstract summary: We propose textitView Iterative Self-Attention Control (VisCtrl) to tackle this challenge.
VisCtrl is a training-free method that injects the appearance and structure of a user-specified subject into another subject in the target image.
Our method results in consistent and harmonious editing with only one reference image in a few denoising steps.
- Score: 10.657829781274254
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fine-Tuning Diffusion Models enable a wide range of personalized generation and editing applications on diverse visual modalities. While Low-Rank Adaptation (LoRA) accelerates the fine-tuning process, it still requires multiple reference images and time-consuming training, which constrains its scalability for large-scale and real-time applications. In this paper, we propose \textit{View Iterative Self-Attention Control (VisCtrl)} to tackle this challenge. Specifically, VisCtrl is a training-free method that injects the appearance and structure of a user-specified subject into another subject in the target image, unlike previous approaches that require fine-tuning the model. Initially, we obtain the initial noise for both the reference and target images through DDIM inversion. Then, during the denoising phase, features from the reference image are injected into the target image via the self-attention mechanism. Notably, by iteratively performing this feature injection process, we ensure that the reference image features are gradually integrated into the target image. This approach results in consistent and harmonious editing with only one reference image in a few denoising steps. Moreover, benefiting from our plug-and-play architecture design and the proposed Feature Gradual Sampling strategy for multi-view editing, our method can be easily extended to edit in complex visual domains. Extensive experiments show the efficacy of VisCtrl across a spectrum of tasks, including personalized editing of images, videos, and 3D scenes.
Related papers
- DisEnvisioner: Disentangled and Enriched Visual Prompt for Customized Image Generation [22.599542105037443]
DisEnvisioner is a novel approach for effectively extracting and enriching the subject-essential features while filtering out -irrelevant information.
Specifically, the feature of the subject and other irrelevant components are effectively separated into distinctive visual tokens, enabling a much more accurate customization.
Experiments demonstrate the superiority of our approach over existing methods in instruction response (editability), ID consistency, inference speed, and the overall image quality.
arXiv Detail & Related papers (2024-10-02T22:29:14Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
We propose a training-free method, dubbed DiffUHaul, for the object dragging task.
We first apply attention masking in each denoising step to make the generation more disentangled across different objects.
In the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance.
arXiv Detail & Related papers (2024-06-03T17:59:53Z) - Tuning-Free Image Customization with Image and Text Guidance [65.9504243633169]
We introduce a tuning-free framework for simultaneous text-image-guided image customization.
Our approach preserves the semantic features of the reference image subject while allowing modification of detailed attributes based on text descriptions.
Our approach outperforms previous methods in both human and quantitative evaluations.
arXiv Detail & Related papers (2024-03-19T11:48:35Z) - Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
We focus on spatial control-based geometric manipulations and introduce a method to consolidate the editing process across various views.
We introduce QNeRF, a neural radiance field trained on the internal query features of the edited images.
We refine the process through a progressive, iterative method that better consolidates queries across the diffusion timesteps.
arXiv Detail & Related papers (2024-02-22T18:50:18Z) - Tuning-Free Inversion-Enhanced Control for Consistent Image Editing [44.311286151669464]
We present a novel approach called Tuning-free Inversion-enhanced Control (TIC)
TIC correlates features from the inversion process with those from the sampling process to mitigate the inconsistency in DDIM reconstruction.
We also propose a mask-guided attention concatenation strategy that combines contents from both the inversion and the naive DDIM editing processes.
arXiv Detail & Related papers (2023-12-22T11:13:22Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
Controllable semantic image editing enables a user to change entire image attributes with few clicks.
Current approaches often suffer from attribute edits that are entangled, global image identity changes, and diminished photo-realism.
We propose quantitative evaluation strategies for measuring controllable editing performance, unlike prior work which primarily focuses on qualitative evaluation.
arXiv Detail & Related papers (2021-02-01T21:38:36Z) - Look here! A parametric learning based approach to redirect visual
attention [49.609412873346386]
We introduce an automatic method to make an image region more attention-capturing via subtle image edits.
Our model predicts a distinct set of global parametric transformations to be applied to the foreground and background image regions.
Our edits enable inference at interactive rates on any image size, and easily generalize to videos.
arXiv Detail & Related papers (2020-08-12T16:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.