Particle Multi-Axis Transformer for Jet Tagging
- URL: http://arxiv.org/abs/2406.06638v2
- Date: Tue, 16 Jul 2024 07:39:49 GMT
- Title: Particle Multi-Axis Transformer for Jet Tagging
- Authors: Muhammad Usman, M Husnain Shahid, Maheen Ejaz, Ummay Hani, Nayab Fatima, Abdul Rehman Khan, Asifullah Khan, Nasir Majid Mirza,
- Abstract summary: In this article, we propose an idea of a new architecture, Particle Multi-Axis transformer (ParMAT)
ParMAT contains local and global spatial interactions within a single unit which improves its ability to handle various input lengths.
We trained our model on JETCLASS, a publicly available large dataset that contains 100M jets of 10 different classes of particles.
- Score: 0.774199694856838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jet tagging is an essential categorization problem in high energy physics. In recent times, Deep Learning has not only risen to the challenge of jet tagging but also significantly improved its performance. In this article, we proposed an idea of a new architecture, Particle Multi-Axis transformer (ParMAT) which is a modified version of Particle transformer (ParT). ParMAT contains local and global spatial interactions within a single unit which improves its ability to handle various input lengths. We trained our model on JETCLASS, a publicly available large dataset that contains 100M jets of 10 different classes of particles. By integrating a parallel attention mechanism and pairwise interactions of particles in the attention mechanism, ParMAT achieves robustness and higher accuracy over the ParT and ParticleNet. The scalability of the model to huge datasets and its ability to automatically extract essential features demonstrate its potential for enhancing jet tagging.
Related papers
- Ultra Fast Transformers on FPGAs for Particle Physics Experiments [2.666074491398626]
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA)
We have implemented critical components of a transformer model, such as multi-head attention and softmax layers.
We recorded latency under 2 $mu$s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at CERN.
arXiv Detail & Related papers (2024-02-01T22:32:39Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
We propose two Transformer variants: Context-Sharing Transformer (CST) and Semantic Gathering-Scattering Transformer (S GST)
CST learns the global-shared contextual information within image frames with a lightweight computation; S GST models the semantic correlation separately for the foreground and background.
Compared with the baseline that uses vanilla Transformers for multi-stage fusion, ours significantly increase the speed by 13 times and achieves new state-of-the-art ZVOS performance.
arXiv Detail & Related papers (2023-08-13T06:12:00Z) - EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets [0.0]
We introduce EPiC-GAN - equivariant point cloud generative adversarial network - which can produce point clouds of variable multiplicity.
EPiC-GAN scales well to large particle multiplicities and achieves high generation fidelity on benchmark jet generation tasks.
arXiv Detail & Related papers (2023-01-17T19:00:00Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Particle Transformer for Jet Tagging [4.604003661048267]
We present JetClass, a new comprehensive dataset for jet tagging.
The dataset consists of 100 M jets, about two orders of magnitude larger than existing public datasets.
We propose a new Transformer-based architecture for jet tagging, called Particle Transformer (ParT)
arXiv Detail & Related papers (2022-02-08T10:36:29Z) - Shunted Self-Attention via Multi-Scale Token Aggregation [124.16925784748601]
Recent Vision Transformer(ViT) models have demonstrated encouraging results across various computer vision tasks.
We propose shunted self-attention(SSA) that allows ViTs to model the attentions at hybrid scales per attention layer.
The SSA-based transformer achieves 84.0% Top-1 accuracy and outperforms the state-of-the-art Focal Transformer on ImageNet.
arXiv Detail & Related papers (2021-11-30T08:08:47Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
We propose a solution named TransMOT to efficiently model the spatial and temporal interactions among objects in a video.
TransMOT is not only more computationally efficient than the traditional Transformer, but it also achieves better tracking accuracy.
The proposed method is evaluated on multiple benchmark datasets including MOT15, MOT16, MOT17, and MOT20.
arXiv Detail & Related papers (2021-04-01T01:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.