Forget Sharpness: Perturbed Forgetting of Model Biases Within SAM Dynamics
- URL: http://arxiv.org/abs/2406.06700v1
- Date: Mon, 10 Jun 2024 18:02:48 GMT
- Title: Forget Sharpness: Perturbed Forgetting of Model Biases Within SAM Dynamics
- Authors: Ankit Vani, Frederick Tung, Gabriel L. Oliveira, Hossein Sharifi-Noghabi,
- Abstract summary: We show that perturbations in sharpness-aware (SAM) perturbations perform forgetting, where they discard undesirable model biases to exhibit learning signals that perturbed better.
Our results suggest that the benefits of SAM can be explained by alternative mechanistic principles that do not require flatness of the loss surface.
- Score: 10.304082706818562
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite attaining high empirical generalization, the sharpness of models trained with sharpness-aware minimization (SAM) do not always correlate with generalization error. Instead of viewing SAM as minimizing sharpness to improve generalization, our paper considers a new perspective based on SAM's training dynamics. We propose that perturbations in SAM perform perturbed forgetting, where they discard undesirable model biases to exhibit learning signals that generalize better. We relate our notion of forgetting to the information bottleneck principle, use it to explain observations like the better generalization of smaller perturbation batches, and show that perturbed forgetting can exhibit a stronger correlation with generalization than flatness. While standard SAM targets model biases exposed by the steepest ascent directions, we propose a new perturbation that targets biases exposed through the model's outputs. Our output bias forgetting perturbations outperform standard SAM, GSAM, and ASAM on ImageNet, robustness benchmarks, and transfer to CIFAR-{10,100}, while sometimes converging to sharper regions. Our results suggest that the benefits of SAM can be explained by alternative mechanistic principles that do not require flatness of the loss surface.
Related papers
- Implicit Regularization of Sharpness-Aware Minimization for Scale-Invariant Problems [26.377807940655305]
This work introduces a concept termed balancedness, defined as the difference between the squared norm of two variables.
We develop a resource-efficient SAM variant, balancedness-aware regularization (BAR), tailored for scale-invariant problems.
arXiv Detail & Related papers (2024-10-18T18:19:18Z) - Bilateral Sharpness-Aware Minimization for Flatter Minima [61.17349662062522]
Sharpness-Aware Minimization (SAM) enhances generalization by reducing a Max-Sharpness (MaxS)
In this paper, we propose to utilize the difference between the training loss and the minimum loss over the neighborhood surrounding the current weight, which we denote as Min-Sharpness (MinS)
By merging MaxS and MinS, we created a better FI that indicates a flatter direction during the optimization. Specially, we combine this FI with SAM into the proposed Bilateral SAM (BSAM) which finds a more flatter minimum than that of SAM.
arXiv Detail & Related papers (2024-09-20T03:01:13Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
Sharpness-Aware Minimization (SAM) has been instrumental in improving deep neural network training by minimizing both training loss and loss sharpness.
We investigate the key role of batch-specific gradient noise within the adversarial perturbation, i.e., the current minibatch gradient.
By decomposing the adversarial gradient noise components, we discover that relying solely on the full gradient degrades generalization while excluding it leads to improved performance.
arXiv Detail & Related papers (2024-03-19T01:39:33Z) - Why Does Sharpness-Aware Minimization Generalize Better Than SGD? [102.40907275290891]
We show why Sharpness-Aware Minimization (SAM) generalizes better than Gradient Descent (SGD) for certain data model and two-layer convolutional ReLU networks.
Our result explains the benefits of SAM, particularly its ability to prevent noise learning in the early stages, thereby facilitating more effective learning of features.
arXiv Detail & Related papers (2023-10-11T07:51:10Z) - ImbSAM: A Closer Look at Sharpness-Aware Minimization in
Class-Imbalanced Recognition [62.20538402226608]
We show that the Sharpness-Aware Minimization (SAM) fails to address generalization issues under the class-imbalanced setting.
We propose a class-aware smoothness optimization algorithm named Imbalanced-SAM (ImbSAM) to overcome this bottleneck.
Our ImbSAM demonstrates remarkable performance improvements for tail classes and anomaly.
arXiv Detail & Related papers (2023-08-15T14:46:32Z) - Normalization Layers Are All That Sharpness-Aware Minimization Needs [53.799769473526275]
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima.
We show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.
arXiv Detail & Related papers (2023-06-07T08:05:46Z) - SAM operates far from home: eigenvalue regularization as a dynamical
phenomenon [15.332235979022036]
The Sharpness Aware Minimization (SAM) algorithm has been shown to control large eigenvalues of the loss Hessian.
We show that SAM provides a strong regularization of the eigenvalues throughout the learning trajectory.
Our theory predicts the largest eigenvalue as a function of the learning rate and SAM radius parameters.
arXiv Detail & Related papers (2023-02-17T04:51:20Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
Sharpness-Aware Minimization (SAM) modifies the underlying loss function to guide descent methods towards flatter minima.
Recent work suggests that mSAM can outperform SAM in terms of test accuracy.
This paper presents a comprehensive empirical evaluation of mSAM on various tasks and datasets.
arXiv Detail & Related papers (2022-12-07T00:37:55Z) - Towards Understanding Sharpness-Aware Minimization [27.666483899332643]
We argue that the existing justifications for the success of Sharpness-Aware Minimization (SAM) are based on a PACBayes generalization.
We theoretically analyze its implicit bias for diagonal linear networks.
We show that fine-tuning a standard model with SAM can be shown significant improvements on the properties of non-sharp networks.
arXiv Detail & Related papers (2022-06-13T15:07:32Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
This paper proposes Efficient Sharpness Aware Minimizer (M) which boosts SAM s efficiency at no cost to its generalization performance.
M includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection.
We show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis bases.
arXiv Detail & Related papers (2021-10-07T02:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.