MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension
- URL: http://arxiv.org/abs/2406.06777v4
- Date: Thu, 22 Aug 2024 02:06:31 GMT
- Title: MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension
- Authors: Khiem Le, Zhichun Guo, Kaiwen Dong, Xiaobao Huang, Bozhao Nan, Roshni Iyer, Xiangliang Zhang, Olaf Wiest, Wei Wang, Nitesh V. Chawla,
- Abstract summary: Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields.
This study seeks to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX.
In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations.
- Score: 34.586861881519134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields, moving beyond natural language understanding. However, their proficiency within the chemistry domain remains restricted, especially in solving professional molecule-related tasks. This challenge is attributed to their inherent limitations in comprehending molecules using only common textual representations, i.e., SMILES strings. In this study, we seek to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX. In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations for feeding into an LLM. Moreover, a handcrafted molecular fingerprint is incorporated to leverage its embedded domain knowledge. Then, to establish an alignment between MolX and the LLM's textual input space, the whole model in which the LLM is frozen, is pre-trained with a versatile strategy including a diverse set of tasks. Experimental evaluations show that our proposed method outperforms baselines across 4 downstream molecule-related tasks ranging from molecule-to-text translation to retrosynthesis, with and without fine-tuning the LLM, while only introducing a small number of trainable parameters 0.53% and 0.82%, respectively.
Related papers
- MolCap-Arena: A Comprehensive Captioning Benchmark on Language-Enhanced Molecular Property Prediction [44.27112553103388]
We present Molecule Caption Arena: the first comprehensive benchmark of large language models (LLMs)augmented molecular property prediction.
We evaluate over twenty LLMs, including both general-purpose and domain-specific molecule captioners, across diverse prediction tasks.
Our findings confirm the ability of LLM-extracted knowledge to enhance state-of-the-art molecular representations.
arXiv Detail & Related papers (2024-11-01T17:03:16Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - UniMoT: Unified Molecule-Text Language Model with Discrete Token Representation [35.51027934845928]
We introduce UniMoT, a Unified Molecule-Text LLM adopting a tokenizer-based architecture.
A Vector Quantization-driven tokenizer transforms molecules into sequences of molecule tokens with causal dependency.
UniMoT emerges as a multi-modal generalist capable of performing both molecule-to-text and text-to-molecule tasks.
arXiv Detail & Related papers (2024-08-01T18:31:31Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - Large Language Models are In-Context Molecule Learners [22.06735237464927]
We propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples.
ICMA incorporates the following three stages: Hybrid Context Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning.
We show that ICMT can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures.
arXiv Detail & Related papers (2024-03-07T03:58:28Z) - Can Large Language Models Empower Molecular Property Prediction? [16.5246941211725]
Molecular property prediction has gained significant attention due to its transformative potential in scientific disciplines.
Recently, the rapid development of Large Language Models (LLMs) has revolutionized the field of NLP.
In this work, we advance towards this objective through two perspectives: zero/few-shot molecular classification, and using the new explanations generated by LLMs as representations of molecules.
arXiv Detail & Related papers (2023-07-14T16:06:42Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.