Reinforced Compressive Neural Architecture Search for Versatile Adversarial Robustness
- URL: http://arxiv.org/abs/2406.06792v2
- Date: Fri, 14 Jun 2024 03:59:05 GMT
- Title: Reinforced Compressive Neural Architecture Search for Versatile Adversarial Robustness
- Authors: Dingrong Wang, Hitesh Sapkota, Zhiqiang Tao, Qi Yu,
- Abstract summary: We propose a Reinforced Compressive Neural Architecture Search (RC-NAS) for Versatile Adversarial Robustness.
Specifically, we define task settings that compose datasets, adversarial attacks, and teacher network information.
Experiments show that our framework could achieve adaptive compression towards different initial teacher networks, datasets, and adversarial attacks.
- Score: 32.914986455418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior neural architecture search (NAS) for adversarial robustness works have discovered that a lightweight and adversarially robust neural network architecture could exist in a non-robust large teacher network, generally disclosed by heuristic rules through statistical analysis and neural architecture search, generally disclosed by heuristic rules from neural architecture search. However, heuristic methods cannot uniformly handle different adversarial attacks and "teacher" network capacity. To solve this challenge, we propose a Reinforced Compressive Neural Architecture Search (RC-NAS) for Versatile Adversarial Robustness. Specifically, we define task settings that compose datasets, adversarial attacks, and teacher network information. Given diverse tasks, we conduct a novel dual-level training paradigm that consists of a meta-training and a fine-tuning phase to effectively expose the RL agent to diverse attack scenarios (in meta-training), and making it adapt quickly to locate a sub-network (in fine-tuning) for any previously unseen scenarios. Experiments show that our framework could achieve adaptive compression towards different initial teacher networks, datasets, and adversarial attacks, resulting in more lightweight and adversarially robust architectures.
Related papers
- Differentiable Search of Accurate and Robust Architectures [22.435774101990752]
adversarial training has been drawing increasing attention because of its simplicity and effectiveness.
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks.
We propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training.
arXiv Detail & Related papers (2022-12-28T08:36:36Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks.
In this paper, we investigate the impact of network width and depth on the robustness of adversarially trained DNNs.
arXiv Detail & Related papers (2021-10-07T23:13:33Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
A shortcoming of convolutional neural networks is that they are vulnerable to adversarial attacks.
This paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy.
Under a minimal computational overhead, a dilation architecture is expected to be friendly with the standard performance of the backbone CNN.
arXiv Detail & Related papers (2021-08-16T03:58:00Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Improving Neural Network Robustness through Neighborhood Preserving
Layers [0.751016548830037]
We demonstrate a novel neural network architecture which can incorporate such layers and also can be trained efficiently.
We empirically show that our designed network architecture is more robust against state-of-art gradient descent based attacks.
arXiv Detail & Related papers (2021-01-28T01:26:35Z) - Multi-objective Search of Robust Neural Architectures against Multiple
Types of Adversarial Attacks [18.681859032630374]
deep learning models are vulnerable to adversarial examples that are imperceptible to humans.
It is practically impossible to predict beforehand which type of attacks a machine learn model may suffer from.
We propose to search for deep neural architectures that are robust to five types of well-known adversarial attacks using a multi-objective evolutionary algorithm.
arXiv Detail & Related papers (2021-01-16T19:38:16Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
We propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching structures in a multi-task neural network.
We show that our approach consistently finds high-performing branching structures within limited resource budgets.
arXiv Detail & Related papers (2020-08-24T09:49:19Z) - On Adversarial Robustness: A Neural Architecture Search perspective [20.478741635006113]
This work is the first large-scale study to understand adversarial robustness purely from an architectural perspective.
We show that random sampling in the search space of DARTS with simple ensembling can improve the robustness to PGD attack by nearly12%.
We show that NAS, which is popular for achieving SoTA accuracy, can provide adversarial accuracy as a free add-on without any form of adversarial training.
arXiv Detail & Related papers (2020-07-16T16:07:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.