On Learning what to Learn: heterogeneous observations of dynamics and establishing (possibly causal) relations among them
- URL: http://arxiv.org/abs/2406.06812v1
- Date: Mon, 10 Jun 2024 21:37:36 GMT
- Title: On Learning what to Learn: heterogeneous observations of dynamics and establishing (possibly causal) relations among them
- Authors: David W. Sroczynski, Felix Dietrich, Eleni D. Koronaki, Ronen Talmon, Ronald R. Coifman, Erik Bollt, Ioannis G. Kevrekidis,
- Abstract summary: We attempt to learn a function between two (sets of) observables of a physical process.
We first decide what the inputs and what the outputs of the desired function are going to be.
We construct mappings from a single set of observations of one process to entire level sets of measurements of the process.
- Score: 4.741643704615452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Before we attempt to learn a function between two (sets of) observables of a physical process, we must first decide what the inputs and what the outputs of the desired function are going to be. Here we demonstrate two distinct, data-driven ways of initially deciding ``the right quantities'' to relate through such a function, and then proceed to learn it. This is accomplished by processing multiple simultaneous heterogeneous data streams (ensembles of time series) from observations of a physical system: multiple observation processes of the system. We thus determine (a) what subsets of observables are common between the observation processes (and therefore observable from each other, relatable through a function); and (b) what information is unrelated to these common observables, and therefore particular to each observation process, and not contributing to the desired function. Any data-driven function approximation technique can subsequently be used to learn the input-output relation, from k-nearest neighbors and Geometric Harmonics to Gaussian Processes and Neural Networks. Two particular ``twists'' of the approach are discussed. The first has to do with the identifiability of particular quantities of interest from the measurements. We now construct mappings from a single set of observations of one process to entire level sets of measurements of the process, consistent with this single set. The second attempts to relate our framework to a form of causality: if one of the observation processes measures ``now'', while the second observation process measures ``in the future'', the function to be learned among what is common across observation processes constitutes a dynamical model for the system evolution.
Related papers
- Complexity in two-point measurement schemes [0.0]
We show that the probability distribution associated with the change of an observable in a two-point measurement protocol with a perturbation can be written as an auto-correlation function.
We probe how the evolved state spreads in the corresponding conjugate space.
We show that the complexity saturates for large values of the parameter only when the pre-quench Hamiltonian is chaotic.
arXiv Detail & Related papers (2023-11-14T04:00:31Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
We propose a learning technique that, given observations of states and velocities along trajectories of agents, yields both the variables upon which the interaction kernel depends and the interaction kernel itself.
This yields an effective dimension reduction which avoids the curse of dimensionality from the high-dimensional observation data.
We demonstrate the learning capability of our method to a variety of first-order interacting systems.
arXiv Detail & Related papers (2022-08-04T16:31:01Z) - Unsupervised learning of observation functions in state-space models by
nonparametric moment methods [9.405458160620533]
We investigate the unsupervised learning of non-invertible observation functions in nonlinear state-space models.
The major challenge comes from the non-invertibility of the observation function and the lack of data pairs between the state and observation.
arXiv Detail & Related papers (2022-07-12T00:42:49Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - Data-driven discovery of interacting particle systems using Gaussian
processes [3.0938904602244346]
We study the data-driven discovery of distance-based interaction laws in second-order interacting particle systems.
We propose a learning approach that models the latent interaction kernel functions as Gaussian processes.
Numerical results on systems that exhibit different collective behaviors demonstrate efficient learning of our approach from scarce noisy trajectory data.
arXiv Detail & Related papers (2021-06-04T22:00:53Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
This work uses relational inference to fill in the incomplete data.
We propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects.
arXiv Detail & Related papers (2021-05-02T06:05:54Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Neural Methods for Point-wise Dependency Estimation [129.93860669802046]
We focus on estimating point-wise dependency (PD), which quantitatively measures how likely two outcomes co-occur.
We demonstrate the effectiveness of our approaches in 1) MI estimation, 2) self-supervised representation learning, and 3) cross-modal retrieval task.
arXiv Detail & Related papers (2020-06-09T23:26:15Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
We propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events.
A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios.
We show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy.
arXiv Detail & Related papers (2020-02-03T17:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.