Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncology
- URL: http://arxiv.org/abs/2406.07078v1
- Date: Tue, 11 Jun 2024 09:06:41 GMT
- Title: Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncology
- Authors: Huahui Yi, Xiaofei Wang, Kang Li, Chao Li,
- Abstract summary: We introduce a hierarchical attention structure to leverage shared and complementary features of both modalities of histology and genomics.
Our method surpasses previous state-of-the-art approaches in glioma diagnosis and prognosis tasks.
- Score: 8.802214988309684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal learning, integrating histology images and genomics, promises to enhance precision oncology with comprehensive views at microscopic and molecular levels. However, existing methods may not sufficiently model the shared or complementary information for more effective integration. In this study, we introduce a Unified Modeling Enhanced Multimodal Learning (UMEML) framework that employs a hierarchical attention structure to effectively leverage shared and complementary features of both modalities of histology and genomics. Specifically, to mitigate unimodal bias from modality imbalance, we utilize a query-based cross-attention mechanism for prototype clustering in the pathology encoder. Our prototype assignment and modularity strategy are designed to align shared features and minimizes modality gaps. An additional registration mechanism with learnable tokens is introduced to enhance cross-modal feature integration and robustness in multimodal unified modeling. Our experiments demonstrate that our method surpasses previous state-of-the-art approaches in glioma diagnosis and prognosis tasks, underscoring its superiority in precision neuro-Oncology.
Related papers
- GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
We propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
arXiv Detail & Related papers (2024-07-08T01:06:13Z) - Knowledge-driven Subspace Fusion and Gradient Coordination for Multi-modal Learning [14.1062929554591]
Multi-modal learning plays a crucial role in cancer diagnosis and prognosis.
Current deep learning based multi-modal approaches are often limited by their abilities to model the complex correlations between genomics and histology data.
We propose a biologically interpretative and robust multi-modal learning framework to efficiently integrate histology images and genomics.
arXiv Detail & Related papers (2024-06-20T04:01:35Z) - Modality-Aware and Shift Mixer for Multi-modal Brain Tumor Segmentation [12.094890186803958]
We present a novel Modality Aware and Shift Mixer that integrates intra-modality and inter-modality dependencies of multi-modal images for effective and robust brain tumor segmentation.
Specifically, we introduce a Modality-Aware module according to neuroimaging studies for modeling the specific modality pair relationships at low levels, and a Modality-Shift module with specific mosaic patterns is developed to explore the complex relationships across modalities at high levels via the self-attention.
arXiv Detail & Related papers (2024-03-04T14:21:51Z) - Joint Self-Supervised and Supervised Contrastive Learning for Multimodal
MRI Data: Towards Predicting Abnormal Neurodevelopment [5.771221868064265]
We present a novel joint self-supervised and supervised contrastive learning method to learn the robust latent feature representation from multimodal MRI data.
Our method has the capability to facilitate computer-aided diagnosis within clinical practice, harnessing the power of multimodal data.
arXiv Detail & Related papers (2023-12-22T21:05:51Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Self-supervised multimodal neuroimaging yields predictive
representations for a spectrum of Alzheimer's phenotypes [27.331511924585023]
This work presents a novel multi-scale coordinated framework for learning multiple representations from multimodal neuroimaging data.
We propose a general taxonomy of informative inductive biases to capture unique and joint information in multimodal self-supervised fusion.
We show that self-supervised models reveal disorder-relevant brain regions and multimodal links without access to the labels during pre-training.
arXiv Detail & Related papers (2022-09-07T01:37:19Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
We propose the Unified Multi-Modal Conditional Score-based Generative Model (UMM-CSGM) to take advantage of Score-based Generative Model (SGM)
UMM-CSGM employs a novel multi-in multi-out Conditional Score Network (mm-CSN) to learn a comprehensive set of cross-modal conditional distributions.
Experiments on BraTS19 dataset show that the UMM-CSGM can more reliably synthesize the heterogeneous enhancement and irregular area in tumor-induced lesions.
arXiv Detail & Related papers (2022-07-07T16:57:21Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.