RGB-Sonar Tracking Benchmark and Spatial Cross-Attention Transformer Tracker
- URL: http://arxiv.org/abs/2406.07189v3
- Date: Wed, 26 Jun 2024 06:39:49 GMT
- Title: RGB-Sonar Tracking Benchmark and Spatial Cross-Attention Transformer Tracker
- Authors: Yunfeng Li, Bo Wang, Jiuran Sun, Xueyi Wu, Ye Li,
- Abstract summary: This paper introduces a new challenging RGB-Sonar (RGB-S) tracking task.
It investigates how to achieve efficient tracking of an underwater target through the interaction of RGB and sonar modalities.
- Score: 4.235252053339947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision camera and sonar are naturally complementary in the underwater environment. Combining the information from two modalities will promote better observation of underwater targets. However, this problem has not received sufficient attention in previous research. Therefore, this paper introduces a new challenging RGB-Sonar (RGB-S) tracking task and investigates how to achieve efficient tracking of an underwater target through the interaction of RGB and sonar modalities. Specifically, we first propose an RGBS50 benchmark dataset containing 50 sequences and more than 87000 high-quality annotated bounding boxes. Experimental results show that the RGBS50 benchmark poses a challenge to currently popular SOT trackers. Second, we propose an RGB-S tracker called SCANet, which includes a spatial cross-attention module (SCAM) consisting of a novel spatial cross-attention layer and two independent global integration modules. The spatial cross-attention is used to overcome the problem of spatial misalignment of between RGB and sonar images. Third, we propose a SOT data-based RGB-S simulation training method (SRST) to overcome the lack of RGB-S training datasets. It converts RGB images into sonar-like saliency images to construct pseudo-data pairs, enabling the model to learn the semantic structure of RGB-S-like data. Comprehensive experiments show that the proposed spatial cross-attention effectively achieves the interaction between RGB and sonar modalities and SCANet achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/RGBS50.
Related papers
- TENet: Targetness Entanglement Incorporating with Multi-Scale Pooling and Mutually-Guided Fusion for RGB-E Object Tracking [30.89375068036783]
Existing approaches perform event feature extraction for RGB-E tracking using traditional appearance models.
We propose an Event backbone (Pooler) to obtain a high-quality feature representation that is cognisant of the intrinsic characteristics of the event data.
Our method significantly outperforms state-of-the-art trackers on two widely used RGB-E tracking datasets.
arXiv Detail & Related papers (2024-05-08T12:19:08Z) - RGBD1K: A Large-scale Dataset and Benchmark for RGB-D Object Tracking [30.448658049744775]
Given a limited amount of annotated RGB-D tracking data, most state-of-the-art RGB-D trackers are simple extensions of high-performance RGB-only trackers.
To address the dataset deficiency issue, a new RGB-D dataset named RGBD1K is released in this paper.
arXiv Detail & Related papers (2022-08-21T03:07:36Z) - Temporal Aggregation for Adaptive RGBT Tracking [14.00078027541162]
We propose an RGBT tracker which takes clues into account for robust appearance model learning.
Unlike most existing RGBT trackers that implement object tracking tasks with only spatial information included, temporal information is further considered in this method.
arXiv Detail & Related papers (2022-01-22T02:31:56Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images.
We present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection.
arXiv Detail & Related papers (2022-01-01T03:02:27Z) - RGB-D Salient Object Detection with Ubiquitous Target Awareness [37.6726410843724]
We make the first attempt to solve the RGB-D salient object detection problem with a novel depth-awareness framework.
We propose a Ubiquitous Target Awareness (UTA) network to solve three important challenges in RGB-D SOD task.
Our proposed UTA network is depth-free for inference and runs in real-time with 43 FPS.
arXiv Detail & Related papers (2021-09-08T04:27:29Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient
Object Detection [73.31632581915201]
We propose a novel data-level recombination strategy to fuse RGB with D (depth) before deep feature extraction.
A newly lightweight designed triple-stream network is applied over these novel formulated data to achieve an optimal channel-wise complementary fusion status between the RGB and D.
arXiv Detail & Related papers (2020-08-07T10:13:05Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
Existing RGB-D saliency datasets are small, which may lead to overfitting and limited generalization for diverse scenarios.
We propose a semi-supervised system for RGB-D saliency detection that can be trained on smaller RGB-D saliency datasets without saliency ground truth.
arXiv Detail & Related papers (2020-07-03T14:24:41Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
We make the first attempt in realizing an unified depth-aware framework with only RGB information as input for inference.
Not only surpasses the state-of-the-art performances on five public RGB SOD benchmarks, but also surpasses the RGBD-based methods on five benchmarks by a large margin.
arXiv Detail & Related papers (2020-05-30T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.