Realistic Data Generation for 6D Pose Estimation of Surgical Instruments
- URL: http://arxiv.org/abs/2406.07328v1
- Date: Tue, 11 Jun 2024 14:59:29 GMT
- Title: Realistic Data Generation for 6D Pose Estimation of Surgical Instruments
- Authors: Juan Antonio Barragan, Jintan Zhang, Haoying Zhou, Adnan Munawar, Peter Kazanzides,
- Abstract summary: 6D pose estimation of surgical instruments is critical to enable the automatic execution of surgical maneuvers.
In household and industrial settings, synthetic data, generated with 3D computer graphics software, has been shown as an alternative to minimize annotation costs.
We propose an improved simulation environment for surgical robotics that enables the automatic generation of large and diverse datasets.
- Score: 4.226502078427161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automation in surgical robotics has the potential to improve patient safety and surgical efficiency, but it is difficult to achieve due to the need for robust perception algorithms. In particular, 6D pose estimation of surgical instruments is critical to enable the automatic execution of surgical maneuvers based on visual feedback. In recent years, supervised deep learning algorithms have shown increasingly better performance at 6D pose estimation tasks; yet, their success depends on the availability of large amounts of annotated data. In household and industrial settings, synthetic data, generated with 3D computer graphics software, has been shown as an alternative to minimize annotation costs of 6D pose datasets. However, this strategy does not translate well to surgical domains as commercial graphics software have limited tools to generate images depicting realistic instrument-tissue interactions. To address these limitations, we propose an improved simulation environment for surgical robotics that enables the automatic generation of large and diverse datasets for 6D pose estimation of surgical instruments. Among the improvements, we developed an automated data generation pipeline and an improved surgical scene. To show the applicability of our system, we generated a dataset of 7.5k images with pose annotations of a surgical needle that was used to evaluate a state-of-the-art pose estimation network. The trained model obtained a mean translational error of 2.59mm on a challenging dataset that presented varying levels of occlusion. These results highlight our pipeline's success in training and evaluating novel vision algorithms for surgical robotics applications.
Related papers
- Automated Surgical Skill Assessment in Endoscopic Pituitary Surgery using Real-time Instrument Tracking on a High-fidelity Bench-top Phantom [9.41936397281689]
Improved surgical skill is generally associated with improved patient outcomes, but assessment is subjective and labour-intensive.
A new public dataset is introduced, focusing on simulated surgery, using the nasal phase of endoscopic pituitary surgery as an exemplar.
A Multilayer Perceptron achieved 87% accuracy in predicting surgical skill level (novice or expert), with the "ratio of total procedure time to instrument visible time" correlated with higher surgical skill.
arXiv Detail & Related papers (2024-09-25T15:27:44Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlane is a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting.
LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields.
LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling.
arXiv Detail & Related papers (2023-05-31T14:38:35Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
We present the results of the SurgLoc 2022 challenge.
The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools.
We conclude by discussing these results in the broader context of machine learning and surgical data science.
arXiv Detail & Related papers (2023-05-11T21:44:39Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Using Hand Pose Estimation To Automate Open Surgery Training Feedback [0.0]
This research aims to facilitate the use of state-of-the-art computer vision algorithms for the automated training of surgeons.
By estimating 2D hand poses, we model the movement of the practitioner's hands, and their interaction with surgical instruments.
arXiv Detail & Related papers (2022-11-13T21:47:31Z) - E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with
Transformer-based Stereoscopic Depth Perception [15.927060244702686]
We present an efficient reconstruction pipeline for highly dynamic surgical scenes that runs at 28 fps.
Specifically, we design a transformer-based stereoscopic depth perception for efficient depth estimation.
We evaluate the proposed pipeline on two datasets, the public Hamlyn Centre Endoscopic Video dataset and our in-house DaVinci robotic surgery dataset.
arXiv Detail & Related papers (2021-07-01T05:57:41Z) - Surgical Visual Domain Adaptation: Results from the MICCAI 2020
SurgVisDom Challenge [9.986124942784969]
This work seeks to explore the potential for visual domain adaptation in surgery to overcome data privacy concerns.
In particular, we propose to use video from virtual reality (VR) simulations of surgical exercises to develop algorithms to recognize tasks in a clinical-like setting.
We present the performance of the different approaches to solve visual domain adaptation developed by challenge participants.
arXiv Detail & Related papers (2021-02-26T18:45:28Z) - Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery [10.562627972607892]
We show that it may be possible to use robot kinematic data coupled with laparoscopic images to alleviate the labelling problem.
We propose a new deep learning based model for parallel processing of both laparoscopic and simulation images.
arXiv Detail & Related papers (2020-07-17T16:33:33Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.