AI Sandbagging: Language Models can Strategically Underperform on Evaluations
- URL: http://arxiv.org/abs/2406.07358v3
- Date: Fri, 14 Jun 2024 22:24:40 GMT
- Title: AI Sandbagging: Language Models can Strategically Underperform on Evaluations
- Authors: Teun van der Weij, Felix Hofstätter, Ollie Jaffe, Samuel F. Brown, Francis Rhys Ward,
- Abstract summary: Trustlocked AI systems are crucial for ensuring the safety of AI systems.
Developers of AI systems may have incentives for sandbagging evaluations.
We show that capability evaluations are vulnerable to sandbagging.
- Score: 1.0485739694839669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trustworthy capability evaluations are crucial for ensuring the safety of AI systems, and are becoming a key component of AI regulation. However, the developers of an AI system, or the AI system itself, may have incentives for evaluations to understate the AI's actual capability. These conflicting interests lead to the problem of sandbagging $\unicode{x2013}$ which we define as "strategic underperformance on an evaluation". In this paper we assess sandbagging capabilities in contemporary language models (LMs). We prompt frontier LMs, like GPT-4 and Claude 3 Opus, to selectively underperform on dangerous capability evaluations, while maintaining performance on general (harmless) capability evaluations. Moreover, we find that models can be fine-tuned, on a synthetic dataset, to hide specific capabilities unless given a password. This behaviour generalizes to high-quality, held-out benchmarks such as WMDP. In addition, we show that both frontier and smaller models can be prompted, or password-locked, to target specific scores on a capability evaluation. Even more, we found that a capable password-locked model (Llama 3 70b) is reasonably able to emulate a less capable model (Llama 2 7b). Overall, our results suggest that capability evaluations are vulnerable to sandbagging. This vulnerability decreases the trustworthiness of evaluations, and thereby undermines important safety decisions regarding the development and deployment of advanced AI systems.
Related papers
- Sabotage Evaluations for Frontier Models [48.23262570766321]
Sufficiently capable models could subvert human oversight and decision-making in important contexts.
We develop a set of related threat models and evaluations.
We demonstrate these evaluations on Anthropic's Claude 3 Opus and Claude 3.5 Sonnet models.
arXiv Detail & Related papers (2024-10-28T20:34:51Z) - PVF (Parameter Vulnerability Factor): A Scalable Metric for Understanding AI Vulnerability Against SDCs in Model Parameters [7.652441604508354]
Vulnerability Factor (PVF) is a metric aiming to standardize the quantification of AI model vulnerability against parameter corruptions.
PVF can provide pivotal insights to AI hardware designers in balancing the tradeoff between fault protection and performance/efficiency.
We present several use cases on applying PVF to three types of tasks/models during inference -- recommendation (DLRM), vision classification (CNN), and text classification (BERT)
arXiv Detail & Related papers (2024-05-02T21:23:34Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - From Adversarial Arms Race to Model-centric Evaluation: Motivating a
Unified Automatic Robustness Evaluation Framework [91.94389491920309]
Textual adversarial attacks can discover models' weaknesses by adding semantic-preserved but misleading perturbations to the inputs.
The existing practice of robustness evaluation may exhibit issues of incomprehensive evaluation, impractical evaluation protocol, and invalid adversarial samples.
We set up a unified automatic robustness evaluation framework, shifting towards model-centric evaluation to exploit the advantages of adversarial attacks.
arXiv Detail & Related papers (2023-05-29T14:55:20Z) - Model evaluation for extreme risks [46.53170857607407]
Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills.
We explain why model evaluation is critical for addressing extreme risks.
arXiv Detail & Related papers (2023-05-24T16:38:43Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - Estimating the Brittleness of AI: Safety Integrity Levels and the Need
for Testing Out-Of-Distribution Performance [0.0]
Test, Evaluation, Verification, and Validation for Artificial Intelligence (AI) is a challenge that threatens to limit the economic and societal rewards that AI researchers have devoted themselves to producing.
This paper argues that neither of those criteria are certain of Deep Neural Networks.
arXiv Detail & Related papers (2020-09-02T03:33:40Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
We evaluate the current state-of-the-art AES models using a model adversarial evaluation scheme and associated metrics.
We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models.
arXiv Detail & Related papers (2020-07-14T03:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.