Hearing Anything Anywhere
- URL: http://arxiv.org/abs/2406.07532v1
- Date: Tue, 11 Jun 2024 17:56:14 GMT
- Title: Hearing Anything Anywhere
- Authors: Mason Wang, Ryosuke Sawata, Samuel Clarke, Ruohan Gao, Shangzhe Wu, Jiajun Wu,
- Abstract summary: We introduce DiffRIR, a differentiable RIR rendering framework with interpretable parametric models of salient acoustic features of the scene.
This allows us to synthesize novel auditory experiences through the space with any source audio.
We show that our model outperforms state-ofthe-art baselines on rendering monaural and RIRs and music at unseen locations.
- Score: 26.415266601469767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen immense progress in 3D computer vision and computer graphics, with emerging tools that can virtualize real-world 3D environments for numerous Mixed Reality (XR) applications. However, alongside immersive visual experiences, immersive auditory experiences are equally vital to our holistic perception of an environment. In this paper, we aim to reconstruct the spatial acoustic characteristics of an arbitrary environment given only a sparse set of (roughly 12) room impulse response (RIR) recordings and a planar reconstruction of the scene, a setup that is easily achievable by ordinary users. To this end, we introduce DiffRIR, a differentiable RIR rendering framework with interpretable parametric models of salient acoustic features of the scene, including sound source directivity and surface reflectivity. This allows us to synthesize novel auditory experiences through the space with any source audio. To evaluate our method, we collect a dataset of RIR recordings and music in four diverse, real environments. We show that our model outperforms state-ofthe-art baselines on rendering monaural and binaural RIRs and music at unseen locations, and learns physically interpretable parameters characterizing acoustic properties of the sound source and surfaces in the scene.
Related papers
- AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis [62.33446681243413]
view acoustic synthesis aims to render audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene.
Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing audio.
We propose a novel Audio-Visual Gaussian Splatting (AV-GS) model to characterize the entire scene environment.
Experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
arXiv Detail & Related papers (2024-06-13T08:34:12Z) - NeRAF: 3D Scene Infused Neural Radiance and Acoustic Fields [3.954853544590893]
We propose NeRAF, a method that jointly learns acoustic and radiance fields.
NeRAF synthesizes both novel views and spatialized room impulse responses (RIR) at new positions.
We demonstrate that NeRAF generates high-quality audio on SoundSpaces and RAF datasets.
arXiv Detail & Related papers (2024-05-28T14:17:41Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF) is a new dataset that captures real acoustic room data from multiple modalities.
RAF is the first dataset to provide densely captured room acoustic data.
arXiv Detail & Related papers (2024-03-27T17:59:56Z) - AV-NeRF: Learning Neural Fields for Real-World Audio-Visual Scene
Synthesis [61.07542274267568]
We study a new task -- real-world audio-visual scene synthesis -- and a first-of-its-kind NeRF-based approach for multimodal learning.
We propose an acoustic-aware audio generation module that integrates prior knowledge of audio propagation into NeRF.
We present a coordinate transformation module that expresses a view direction relative to the sound source, enabling the model to learn sound source-centric acoustic fields.
arXiv Detail & Related papers (2023-02-04T04:17:19Z) - SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning [127.1119359047849]
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
It generates highly realistic acoustics for arbitrary sounds captured from arbitrary microphone locations.
SoundSpaces 2.0 is publicly available to facilitate wider research for perceptual systems that can both see and hear.
arXiv Detail & Related papers (2022-06-16T17:17:44Z) - Few-Shot Audio-Visual Learning of Environment Acoustics [89.16560042178523]
Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener.
We explore how to infer RIRs based on a sparse set of images and echoes observed in the space.
In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs.
arXiv Detail & Related papers (2022-06-08T16:38:24Z) - Geometry-Aware Multi-Task Learning for Binaural Audio Generation from
Video [94.42811508809994]
We propose an audio spatialization method that draws on visual information in videos to convert their monaural (single-channel) audio to audio.
Whereas existing approaches leverage visual features extracted directly from video frames, our approach explicitly disentangles the geometric cues present in the visual stream to guide the learning process.
arXiv Detail & Related papers (2021-11-21T19:26:45Z) - Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis [0.3587367153279349]
We use an end-to-end neural network architecture to generate plausible audio impulse responses from single images of acoustic environments.
We demonstrate our approach by generating plausible impulse responses from diverse settings and formats.
arXiv Detail & Related papers (2021-03-26T01:25:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.