After the Breach: Incident Response within Enterprises
- URL: http://arxiv.org/abs/2406.07559v2
- Date: Thu, 13 Jun 2024 15:38:51 GMT
- Title: After the Breach: Incident Response within Enterprises
- Authors: Sumanth Rao,
- Abstract summary: We present a survey of systems that perform automated attack investigation.
We discuss the challenges faced by these systems, and present a comparison in terms of their effectiveness, practicality, and ability to address these challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprises are constantly under attack from sophisticated adversaries. These adversaries use a variety of techniques to first gain access to the enterprise, then spread laterally inside its networks, establish persistence, and finally exfiltrate sensitive data, or hold it for ransom. While historically, enterprises have used different Incident Response systems that monitor hosts, servers, or network devices to detect and report threats, these systems often need many analysts to triage and respond to alerts. However, the immense quantity of alerts to sift through, combined with the potential risk of missing a valid threat makes the task of the analyst challenging. To ease this manual and laborious process, researchers have proposed a variety of systems that perform automated attack investigations. These systems collect data, track causally related events, and present the analyst with an interpretable summary of the attack. In this paper, we present a survey of systems that perform automated attack investigation, and compare them based on their designs, goals, and heuristics. We discuss the challenges faced by these systems, and present a comparison in terms of their effectiveness, practicality, and ability to address these challenges. We conclude by discussing the future of these systems, and the open problems in this area.
Related papers
- IDU-Detector: A Synergistic Framework for Robust Masquerader Attack Detection [3.3821216642235608]
In the digital age, users store personal data in corporate databases, making data security central to enterprise management.
Given the extensive attack surface, assets face challenges like weak authentication, vulnerabilities, and malware.
We introduce the IDU-Detector, integrating Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA)
This integration monitors unauthorized access, bridges system gaps, ensures continuous monitoring, and enhances threat identification.
arXiv Detail & Related papers (2024-11-09T13:03:29Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - A Survey on Context-Aware Multi-Agent Systems: Techniques, Challenges
and Future Directions [1.1458366773578277]
Research interest in autonomous agents is on the rise as an emerging topic.
The challenge lies in enabling these agents to learn, reason, and navigate uncertainties in dynamic environments.
Context awareness emerges as a pivotal element in fortifying multi-agent systems.
arXiv Detail & Related papers (2024-02-03T00:27:22Z) - Evaluating the Vulnerabilities in ML systems in terms of adversarial
attacks [0.0]
New adversarial attacks methods may pose challenges to current deep learning cyber defense systems.
Authors explore the consequences of vulnerabilities in AI systems.
It is important to train the AI systems appropriately when they are in testing phase and getting them ready for broader use.
arXiv Detail & Related papers (2023-08-24T16:46:01Z) - A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions [1.0923877073891446]
It is critical that security is ensured for UAVs and the networks that provide communication between UAVs.
This survey seeks to provide a comprehensive perspective on security within the domain of UAVs and Flying Ad Hoc Networks (FANETs)
arXiv Detail & Related papers (2023-06-25T16:15:40Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - RANK: AI-assisted End-to-End Architecture for Detecting Persistent
Attacks in Enterprise Networks [2.294014185517203]
We present an end-to-end AI-assisted architecture for detecting Advanced Persistent Threats (APTs)
The architecture is composed of four consecutive steps: 1) alert templating and merging, 2) alert graph construction, 3) alert graph partitioning into incidents, and 4) incident scoring and ordering.
Extensive results are provided showing a three order of magnitude reduction in the amount of data to be reviewed by the analyst, innovative extraction of incidents and security-wise scoring of extracted incidents.
arXiv Detail & Related papers (2021-01-06T15:59:51Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.