Rate-Preserving Reductions for Blackwell Approachability
- URL: http://arxiv.org/abs/2406.07585v2
- Date: Wed, 17 Jul 2024 15:28:36 GMT
- Title: Rate-Preserving Reductions for Blackwell Approachability
- Authors: Christoph Dann, Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan,
- Abstract summary: Abernethy et al. (2011) showed that Blackwell approachability and no-regret learning are equivalent.
We show that it is possible to tightly reduce any approachability instance to an instance of a generalized form of regret minimization.
- Score: 72.03309261614991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Abernethy et al. (2011) showed that Blackwell approachability and no-regret learning are equivalent, in the sense that any algorithm that solves a specific Blackwell approachability instance can be converted to a sublinear regret algorithm for a specific no-regret learning instance, and vice versa. In this paper, we study a more fine-grained form of such reductions, and ask when this translation between problems preserves not only a sublinear rate of convergence, but also preserves the optimal rate of convergence. That is, in which cases does it suffice to find the optimal regret bound for a no-regret learning instance in order to find the optimal rate of convergence for a corresponding approachability instance? We show that the reduction of Abernethy et al. (2011) does not preserve rates: their reduction may reduce a $d$-dimensional approachability instance $I_1$ with optimal convergence rate $R_1$ to a no-regret learning instance $I_2$ with optimal regret-per-round of $R_2$, with $R_{2}/R_{1}$ arbitrarily large (in particular, it is possible that $R_1 = 0$ and $R_{2} > 0$). On the other hand, we show that it is possible to tightly reduce any approachability instance to an instance of a generalized form of regret minimization we call improper $\phi$-regret minimization (a variant of the $\phi$-regret minimization of Gordon et al. (2008) where the transformation functions may map actions outside of the action set). Finally, we characterize when linear transformations suffice to reduce improper $\phi$-regret minimization problems to standard classes of regret minimization problems in a rate preserving manner. We prove that some improper $\phi$-regret minimization instances cannot be reduced to either subclass of instance in this way, suggesting that approachability can capture some problems that cannot be phrased in the language of online learning.
Related papers
- An Equivalence Between Static and Dynamic Regret Minimization [10.812831455376218]
We show that for linear losses, dynamic regret minimization is equivalent to static regret minimization in an extended decision space.
We provide an algorithm guaranteeing dynamic regret of the form $R_T(u_1,dots,u_T)le tilde.
arXiv Detail & Related papers (2024-06-03T17:54:58Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
We study the low-rank MDPs with adversarially changed losses in the full-information feedback setting.
We propose a policy optimization-based algorithm POLO, and we prove that it attains the $widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee.
arXiv Detail & Related papers (2023-11-14T03:12:43Z) - From External to Swap Regret 2.0: An Efficient Reduction and Oblivious
Adversary for Large Action Spaces [29.29647282754262]
We show that, whenever there exists a no-external-regret algorithm for some hypothesis class, there must also exist a no-swap-regret algorithm for that same class.
Our reduction implies that, if no-regret learning is possible in some game, then this game must have approximate correlated equilibria.
arXiv Detail & Related papers (2023-10-30T17:50:29Z) - $(\epsilon, u)$-Adaptive Regret Minimization in Heavy-Tailed Bandits [29.966828248335972]
We study the regret minimization problem when $epsilon$ and $u$ are unknown to the learner.
AdaR-UCB is the first algorithm that enjoys regret guarantees nearly matching those of the non-adaptive heavy-tailed case.
arXiv Detail & Related papers (2023-10-04T17:11:15Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret
and Policy Switches [84.54669549718075]
We study the problem of regret minimization for episodic Reinforcement Learning (RL)
We focus on learning with general function classes and general model classes.
We show that a logarithmic regret bound is realizable by algorithms with $O(log T)$ switching cost.
arXiv Detail & Related papers (2022-03-03T02:55:55Z) - First-Order Regret in Reinforcement Learning with Linear Function
Approximation: A Robust Estimation Approach [57.570201404222935]
We show that it is possible to obtain regret scaling as $mathcalO(sqrtV_1star K)$ in reinforcement learning with large state spaces.
We demonstrate that existing techniques based on at least squares estimation are insufficient to obtain this result.
arXiv Detail & Related papers (2021-12-07T00:29:57Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.