A Concise Mathematical Description of Active Inference in Discrete Time
- URL: http://arxiv.org/abs/2406.07726v2
- Date: Wed, 25 Sep 2024 17:59:18 GMT
- Title: A Concise Mathematical Description of Active Inference in Discrete Time
- Authors: Jesse van Oostrum, Carlotta Langer, Nihat Ay,
- Abstract summary: The main part of the paper serves as a basic introduction to the topic, including a detailed example illustrating the theory on action selection.
In the appendix the more subtle mathematical details are discussed.
This part is aimed at readers who have already studied the active inference literature but struggle to make sense of the mathematical details and derivations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we present a concise mathematical description of active inference in discrete time. The main part of the paper serves as a basic introduction to the topic, including a detailed example illustrating the theory on action selection. In the appendix the more subtle mathematical details are discussed. This part is aimed at readers who have already studied the active inference literature but struggle to make sense of the mathematical details and derivations. Throughout the whole manuscript, special attention has been paid to adopting notation that is both precise and in line with standard mathematical texts. All equations and derivations are linked to specific equation numbers in other popular text on the topic. Furthermore, Python code is provided that implements the action selection mechanism described in this paper and is compatible with pymdp environments.
Related papers
- The Weak Form Is Stronger Than You Think [0.0]
The weak form is a well-studied, widely-utilized mathematical tool.
Recent advances in weak form versions of equation learning, parameter estimation, and coarse graining offer surprising noise robustness, accuracy, and computational efficiency.
arXiv Detail & Related papers (2024-09-10T13:59:17Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
The current state-of-the-art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms of mathematical reasoning.
This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities.
It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement.
arXiv Detail & Related papers (2024-03-07T15:12:06Z) - Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference [110.47649327040392]
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?"
We show how these questions can have compact, closed form solutions in terms of learned representations.
arXiv Detail & Related papers (2024-03-06T22:27:30Z) - Abstraction boundaries and spec driven development in pure mathematics [0.0]
In this article we discuss how abstraction boundaries can help tame complexity in mathematical research.
We argue that the use of an interactive theorem prover introduces additional qualitative benefits in the implementation of these ideas.
arXiv Detail & Related papers (2023-09-26T11:59:32Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
We propose a novel contrastive pre-training approach for mathematical question representations, namely QuesCo.
We first design two-level question augmentations, including content-level and structure-level, which generate literally diverse question pairs with similar purposes.
Then, to fully exploit hierarchical information of knowledge concepts, we propose a knowledge hierarchy-aware rank strategy.
arXiv Detail & Related papers (2023-01-18T14:23:29Z) - Spectral theorem for dummies: A pedagogical discussion on quantum
probability and random variable theory [0.0]
John von Neumann's spectral theorem for self-adjoint operators is a cornerstone of quantum mechanics.
This paper presents a plain-spoken formulation of this theorem in terms of Dirac's bra and ket notation.
arXiv Detail & Related papers (2022-11-23T07:05:47Z) - Semantic Representations of Mathematical Expressions in a Continuous
Vector Space [0.0]
This work describes an approach for representing mathematical expressions in a continuous vector space.
We use the encoder of a sequence-to-sequence architecture, trained on visually different but mathematically equivalent expressions, to generate vector representations.
arXiv Detail & Related papers (2022-10-08T22:33:39Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z) - Target-aware Abstractive Related Work Generation with Contrastive
Learning [48.02845973891943]
The related work section is an important component of a scientific paper, which highlights the contribution of the target paper in the context of the reference papers.
Most of the existing related work section generation methods rely on extracting off-the-shelf sentences.
We propose an abstractive target-aware related work generator (TAG), which can generate related work sections consisting of new sentences.
arXiv Detail & Related papers (2022-05-26T13:20:51Z) - Computing Rule-Based Explanations of Machine Learning Classifiers using
Knowledge Graphs [62.997667081978825]
We use knowledge graphs as the underlying framework providing the terminology for representing explanations for the operation of a machine learning classifier.
In particular, we introduce a novel method for extracting and representing black-box explanations of its operation, in the form of first-order logic rules expressed in the terminology of the knowledge graph.
arXiv Detail & Related papers (2022-02-08T16:21:49Z) - Self-adjoint extension schemes and modern applications to quantum
Hamiltonians [55.2480439325792]
monograph contains revised and enlarged materials from previous lecture notes of undergraduate and graduate courses and seminars delivered by both authors over the last years on a subject that is central both in abstract operator theory and in applications to quantum mechanics.
A number of models are discussed, which are receiving today new or renewed interest in mathematical physics, in particular from the point of view of realising certain operators of interests self-adjointly.
arXiv Detail & Related papers (2022-01-25T09:45:16Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdp is an open-source package for simulating active inference in Python.
We provide the first open-source package for simulating active inference with POMDPs.
arXiv Detail & Related papers (2022-01-11T12:18:44Z) - Fact-driven Logical Reasoning for Machine Reading Comprehension [82.58857437343974]
We are motivated to cover both commonsense and temporary knowledge clues hierarchically.
Specifically, we propose a general formalism of knowledge units by extracting backbone constituents of the sentence.
We then construct a supergraph on top of the fact units, allowing for the benefit of sentence-level (relations among fact groups) and entity-level interactions.
arXiv Detail & Related papers (2021-05-21T13:11:13Z) - Sequential composition of answer set programs [0.0]
This paper contributes to the mathematical foundations of logic programming by introducing and studying the sequential composition of answer set programs.
In a broader sense, this paper is a first step towards an algebra of answer set programs and in the future we plan to lift the methods of this paper to wider classes of programs.
arXiv Detail & Related papers (2021-04-25T13:27:22Z) - High-dimensional distributed semantic spaces for utterances [0.2907403645801429]
This paper describes a model for high-dimensional representation for utterance and text level data.
It is based on a mathematically principled and behaviourally plausible approach to representing linguistic information.
The paper shows how the implemented model is able to represent a broad range of linguistic features in a common integral framework of fixed dimensionality.
arXiv Detail & Related papers (2021-04-01T12:09:47Z) - A Survey of Orthogonal Moments for Image Representation: Theory,
Implementation, and Evaluation [70.0671278823937]
Moment-based image representation has been reported to be effective in satisfying the core conditions of semantic description.
This paper presents a comprehensive survey of the orthogonal moments for image representation, covering recent advances in fast/accurate calculation, robustness/invariance optimization, and definition extension.
The presented theory analysis, software implementation, and evaluation results can support the community, particularly in developing novel techniques and promoting real-world applications.
arXiv Detail & Related papers (2021-03-27T03:41:08Z) - Using Machine Learning and Natural Language Processing Techniques to
Analyze and Support Moderation of Student Book Discussions [0.0]
The IMapBook project aims at improving the literacy and reading comprehension skills of elementary school-aged children by presenting them with interactive e-books and letting them take part in moderated book discussions.
This study aims to develop and illustrate a machine learning-based approach to message classification that could be used to automatically notify the discussion moderator of a possible need for an intervention and also to collect other useful information about the ongoing discussion.
arXiv Detail & Related papers (2020-11-23T20:33:09Z) - Natural Language Premise Selection: Finding Supporting Statements for
Mathematical Text [3.42658286826597]
We propose a new NLP task, the natural premise selection, which is used to retrieve supporting definitions and supporting propositions.
We also make available a dataset, NL-PS, which can be used to evaluate different approaches for the natural premise selection task.
arXiv Detail & Related papers (2020-04-30T17:08:03Z) - Inferring Temporal Compositions of Actions Using Probabilistic Automata [61.09176771931052]
We propose to express temporal compositions of actions as semantic regular expressions and derive an inference framework using probabilistic automata.
Our approach is different from existing works that either predict long-range complex activities as unordered sets of atomic actions, or retrieve videos using natural language sentences.
arXiv Detail & Related papers (2020-04-28T00:15:26Z) - Salience Estimation with Multi-Attention Learning for Abstractive Text
Summarization [86.45110800123216]
In the task of text summarization, salience estimation for words, phrases or sentences is a critical component.
We propose a Multi-Attention Learning framework which contains two new attention learning components for salience estimation.
arXiv Detail & Related papers (2020-04-07T02:38:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.