EmoSphere-TTS: Emotional Style and Intensity Modeling via Spherical Emotion Vector for Controllable Emotional Text-to-Speech
- URL: http://arxiv.org/abs/2406.07803v1
- Date: Wed, 12 Jun 2024 01:40:29 GMT
- Title: EmoSphere-TTS: Emotional Style and Intensity Modeling via Spherical Emotion Vector for Controllable Emotional Text-to-Speech
- Authors: Deok-Hyeon Cho, Hyung-Seok Oh, Seung-Bin Kim, Sang-Hoon Lee, Seong-Whan Lee,
- Abstract summary: EmoSphere-TTS synthesizes expressive emotional speech by using a spherical emotion vector to control the emotional style and intensity of the synthetic speech.
We propose a dual conditional adversarial network to improve the quality of generated speech by reflecting the multi-aspect characteristics.
- Score: 34.03787613163788
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite rapid advances in the field of emotional text-to-speech (TTS), recent studies primarily focus on mimicking the average style of a particular emotion. As a result, the ability to manipulate speech emotion remains constrained to several predefined labels, compromising the ability to reflect the nuanced variations of emotion. In this paper, we propose EmoSphere-TTS, which synthesizes expressive emotional speech by using a spherical emotion vector to control the emotional style and intensity of the synthetic speech. Without any human annotation, we use the arousal, valence, and dominance pseudo-labels to model the complex nature of emotion via a Cartesian-spherical transformation. Furthermore, we propose a dual conditional adversarial network to improve the quality of generated speech by reflecting the multi-aspect characteristics. The experimental results demonstrate the model ability to control emotional style and intensity with high-quality expressive speech.
Related papers
- EmoSphere++: Emotion-Controllable Zero-Shot Text-to-Speech via Emotion-Adaptive Spherical Vector [26.656512860918262]
EmoSphere++ is an emotion-controllable zero-shot TTS model that can control emotional style and intensity to resemble natural human speech.
We introduce a novel emotion-adaptive spherical vector that models emotional style and intensity without human annotation.
We employ a conditional flow matching-based decoder to achieve high-quality and expressive emotional TTS in a few sampling steps.
arXiv Detail & Related papers (2024-11-04T21:33:56Z) - EmoKnob: Enhance Voice Cloning with Fine-Grained Emotion Control [7.596581158724187]
EmoKnob is a framework that allows fine-grained emotion control in speech synthesis with few-shot demonstrative samples of arbitrary emotion.
We show that our emotion control framework effectively embeds emotions into speech and surpasses emotion expressiveness of commercial TTS services.
arXiv Detail & Related papers (2024-10-01T01:29:54Z) - Daisy-TTS: Simulating Wider Spectrum of Emotions via Prosody Embedding Decomposition [12.605375307094416]
We propose an emotional text-to-speech design to simulate a wider spectrum of emotions grounded on the structural model.
Our proposed design, Daisy-TTS, incorporates a prosody encoder to learn emotionally-separable prosody embedding as a proxy for emotion.
arXiv Detail & Related papers (2024-02-22T13:15:49Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
Emotional Voice Conversion aims to manipulate a speech according to a given emotion while preserving non-emotion components.
We propose an Attention-based Interactive diseNtangling Network (AINN) that leverages instance-wise emotional knowledge for voice conversion.
arXiv Detail & Related papers (2023-12-29T08:06:45Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - AffectEcho: Speaker Independent and Language-Agnostic Emotion and Affect
Transfer for Speech Synthesis [13.918119853846838]
Affect is an emotional characteristic encompassing valence, arousal, and intensity, and is a crucial attribute for enabling authentic conversations.
We propose AffectEcho, an emotion translation model, that uses a Vector Quantized codebook to model emotions within a quantized space.
We demonstrate the effectiveness of our approach in controlling the emotions of generated speech while preserving identity, style, and emotional cadence unique to each speaker.
arXiv Detail & Related papers (2023-08-16T06:28:29Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity.
In this paper, we aim to explicitly characterize and control the intensity of emotion.
We propose to disentangle the speaker style from linguistic content and encode the speaker style into a style embedding in a continuous space that forms the prototype of emotion embedding.
arXiv Detail & Related papers (2022-01-10T02:11:25Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
We introduce and publicly release a Mandarin emotion speech dataset including 9,724 samples with audio files and its emotion human-labeled annotation.
Unlike those models which need additional reference audio as input, our model could predict emotion labels just from the input text and generate more expressive speech conditioned on the emotion embedding.
In the experiment phase, we first validate the effectiveness of our dataset by an emotion classification task. Then we train our model on the proposed dataset and conduct a series of subjective evaluations.
arXiv Detail & Related papers (2021-06-17T08:34:21Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years.
We propose a new interactive training paradigm for ETTS, denoted as i-ETTS.
We formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization.
arXiv Detail & Related papers (2021-04-03T13:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.