Spatial Annealing for Efficient Few-shot Neural Rendering
- URL: http://arxiv.org/abs/2406.07828v2
- Date: Fri, 13 Dec 2024 04:12:25 GMT
- Title: Spatial Annealing for Efficient Few-shot Neural Rendering
- Authors: Yuru Xiao, Deming Zhai, Wenbo Zhao, Kui Jiang, Junjun Jiang, Xianming Liu,
- Abstract summary: We introduce an accurate and efficient few-shot neural rendering method named textbfSpatial textbfAnnealing regularized textbfNeRF (textbfSANeRF)
By adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot neural rendering methods.
- Score: 73.49548565633123
- License:
- Abstract: Neural Radiance Fields (NeRF) with hybrid representations have shown impressive capabilities for novel view synthesis, delivering high efficiency. Nonetheless, their performance significantly drops with sparse input views. Various regularization strategies have been devised to address these challenges. However, these strategies either require additional rendering costs or involve complex pipeline designs, leading to a loss of training efficiency. Although FreeNeRF has introduced an efficient frequency annealing strategy, its operation on frequency positional encoding is incompatible with the efficient hybrid representations. In this paper, we introduce an accurate and efficient few-shot neural rendering method named \textbf{S}patial \textbf{A}nnealing regularized \textbf{NeRF} (\textbf{SANeRF}), which adopts the pre-filtering design of a hybrid representation. We initially establish the analytical formulation of the frequency band limit for a hybrid architecture by deducing its filtering process. Based on this analysis, we propose a universal form of frequency annealing in the spatial domain, which can be implemented by modulating the sampling kernel to exponentially shrink from an initial one with a narrow grid tangent kernel spectrum. This methodology is crucial for stabilizing the early stages of the training phase and significantly contributes to enhancing the subsequent process of detail refinement. Our extensive experiments reveal that, by adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot neural rendering methods. Notably, SANeRF outperforms FreeNeRF on the Blender dataset, achieving 700$\times$ faster reconstruction speed.
Related papers
- SGCNeRF: Few-Shot Neural Rendering via Sparse Geometric Consistency Guidance [106.0057551634008]
FreeNeRF attempts to overcome this limitation by integrating implicit geometry regularization.
New study introduces a novel feature matching based sparse geometry regularization module.
module excels in pinpointing high-frequency keypoints, thereby safeguarding the integrity of fine details.
arXiv Detail & Related papers (2024-04-01T08:37:57Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - Hyb-NeRF: A Multiresolution Hybrid Encoding for Neural Radiance Fields [12.335934855851486]
We present Hyb-NeRF, a novel neural radiance field with a multi-resolution hybrid encoding.
We show that Hyb-NeRF achieves faster rendering speed with better rending quality and even a lower memory footprint in comparison to previous methods.
arXiv Detail & Related papers (2023-11-21T10:01:08Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRF is an efficient pipeline for enhancing implicit neural representations via vector quantization.
We present an innovative multi-scale NeRF sampling scheme that concurrently optimize the NeRF model at both compressed and original scales.
We incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions.
arXiv Detail & Related papers (2023-10-23T01:41:38Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
We propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time.
We use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF.
Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods.
arXiv Detail & Related papers (2023-08-22T02:23:28Z) - MF-NeRF: Memory Efficient NeRF with Mixed-Feature Hash Table [62.164549651134465]
We propose MF-NeRF, a memory-efficient NeRF framework that employs a Mixed-Feature hash table to improve memory efficiency and reduce training time while maintaining reconstruction quality.
Our experiments with state-of-the-art Instant-NGP, TensoRF, and DVGO, indicate our MF-NeRF could achieve the fastest training time on the same GPU hardware with similar or even higher reconstruction quality.
arXiv Detail & Related papers (2023-04-25T05:44:50Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.