KernelWarehouse: Rethinking the Design of Dynamic Convolution
- URL: http://arxiv.org/abs/2406.07879v1
- Date: Wed, 12 Jun 2024 05:16:26 GMT
- Title: KernelWarehouse: Rethinking the Design of Dynamic Convolution
- Authors: Chao Li, Anbang Yao,
- Abstract summary: KernelWarehouse redefines the basic concepts of Kernels", assembling kernels" and attention function"
We testify the effectiveness of KernelWarehouse on ImageNet and MS-COCO datasets using various ConvNet architectures.
- Score: 16.101179962553385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic convolution learns a linear mixture of n static kernels weighted with their input-dependent attentions, demonstrating superior performance than normal convolution. However, it increases the number of convolutional parameters by n times, and thus is not parameter efficient. This leads to no research progress that can allow researchers to explore the setting n>100 (an order of magnitude larger than the typical setting n<10) for pushing forward the performance boundary of dynamic convolution while enjoying parameter efficiency. To fill this gap, in this paper, we propose KernelWarehouse, a more general form of dynamic convolution, which redefines the basic concepts of ``kernels", ``assembling kernels" and ``attention function" through the lens of exploiting convolutional parameter dependencies within the same layer and across neighboring layers of a ConvNet. We testify the effectiveness of KernelWarehouse on ImageNet and MS-COCO datasets using various ConvNet architectures. Intriguingly, KernelWarehouse is also applicable to Vision Transformers, and it can even reduce the model size of a backbone while improving the model accuracy. For instance, KernelWarehouse (n=4) achieves 5.61%|3.90%|4.38% absolute top-1 accuracy gain on the ResNet18|MobileNetV2|DeiT-Tiny backbone, and KernelWarehouse (n=1/4) with 65.10% model size reduction still achieves 2.29% gain on the ResNet18 backbone. The code and models are available at https://github.com/OSVAI/KernelWarehouse.
Related papers
- PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution [35.1473732030645]
Inspired by human vision, we propose a human-like peripheral convolution that efficiently reduces over 90% parameter count of dense grid convolution.
Our peripheral convolution behaves highly similar to human, reducing the complexity of convolution from O(K2) to O(logK) without backfiring performance.
For the first time, we successfully scale up the kernel size of CNNs to an unprecedented 101x101 and demonstrate consistent improvements.
arXiv Detail & Related papers (2024-03-12T12:19:05Z) - KernelWarehouse: Towards Parameter-Efficient Dynamic Convolution [19.021411176761738]
Dynamic convolution learns a linear mixture of $n$ static kernels weighted with their sample-dependent attentions.
Existing designs are parameter-inefficient: they increase the number of convolutional parameters by $n$ times.
We propose $ KernelWarehouse, which can strike a favorable trade-off between parameter efficiency and representation power.
arXiv Detail & Related papers (2023-08-16T13:35:09Z) - Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for
Medical Image Segmentation [25.62587471067468]
RepUX-Net is a pure CNN architecture with a simple large kernel block design.
Inspired by the spatial frequency in the human visual system, we extend to vary the kernel convergence into element-wise setting.
arXiv Detail & Related papers (2023-03-10T08:38:34Z) - GMConv: Modulating Effective Receptive Fields for Convolutional Kernels [52.50351140755224]
In convolutional neural networks, the convolutions are performed using a square kernel with a fixed N $times$ N receptive field (RF)
Inspired by the property that ERFs typically exhibit a Gaussian distribution, we propose a Gaussian Mask convolutional kernel (GMConv) in this work.
Our GMConv can directly replace the standard convolutions in existing CNNs and can be easily trained end-to-end by standard back-propagation.
arXiv Detail & Related papers (2023-02-09T10:17:17Z) - Omni-Dimensional Dynamic Convolution [25.78940854339179]
Learning a single static convolutional kernel in each convolutional layer is the common training paradigm of modern Convolutional Neural Networks (CNNs)
Recent research in dynamic convolution shows that learning a linear combination of $n$ convolutional kernels weighted with their input-dependent attentions can significantly improve the accuracy of light-weight CNNs.
We present Omni-dimensional Dynamic Convolution (ODConv), a more generalized yet elegant dynamic convolution design.
arXiv Detail & Related papers (2022-09-16T14:05:38Z) - More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using
Sparsity [103.62784587778037]
Recently, a couple of advanced convolutional models strike back with large kernels motivated by the local but large attention mechanism.
We propose Sparse Large Kernel Network (SLaK), a pure CNN architecture equipped with 51x51 kernels that can perform on par with or better than state-of-the-art hierarchical Transformers.
arXiv Detail & Related papers (2022-07-07T23:55:52Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - Fast and High-Quality Image Denoising via Malleable Convolutions [72.18723834537494]
We present Malleable Convolution (MalleConv), as an efficient variant of dynamic convolution.
Unlike previous works, MalleConv generates a much smaller set of spatially-varying kernels from input.
We also build an efficient denoising network using MalleConv, coined as MalleNet.
arXiv Detail & Related papers (2022-01-02T18:35:20Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - DyNet: Dynamic Convolution for Accelerating Convolutional Neural
Networks [16.169176006544436]
We propose a novel dynamic convolution method to adaptively generate convolution kernels based on image contents.
Based on the architecture MobileNetV3-Small/Large, DyNet achieves 70.3/77.1% Top-1 accuracy on ImageNet with an improvement of 2.9/1.9%.
arXiv Detail & Related papers (2020-04-22T16:58:05Z) - Kernel Quantization for Efficient Network Compression [59.55192551370948]
Kernel Quantization (KQ) aims to efficiently convert any pre-trained full-precision convolutional neural network (CNN) model into a low-precision version without significant performance loss.
Inspired by the evolution from weight pruning to filter pruning, we propose to quantize in both kernel and weight level.
Experiments on the ImageNet classification task prove that KQ needs 1.05 and 1.62 bits on average in VGG and ResNet18, respectively, to represent each parameter in the convolution layer.
arXiv Detail & Related papers (2020-03-11T08:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.