Better than Random: Reliable NLG Human Evaluation with Constrained Active Sampling
- URL: http://arxiv.org/abs/2406.07967v1
- Date: Wed, 12 Jun 2024 07:44:36 GMT
- Title: Better than Random: Reliable NLG Human Evaluation with Constrained Active Sampling
- Authors: Jie Ruan, Xiao Pu, Mingqi Gao, Xiaojun Wan, Yuesheng Zhu,
- Abstract summary: We propose a Constrained Active Sampling Framework (CASF) for reliable human judgment.
Experiment results show CASF receives 93.18% top-ranked system recognition accuracy.
- Score: 50.08315607506652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human evaluation is viewed as a reliable evaluation method for NLG which is expensive and time-consuming. To save labor and costs, researchers usually perform human evaluation on a small subset of data sampled from the whole dataset in practice. However, different selection subsets will lead to different rankings of the systems. To give a more correct inter-system ranking and make the gold standard human evaluation more reliable, we propose a Constrained Active Sampling Framework (CASF) for reliable human judgment. CASF operates through a Learner, a Systematic Sampler and a Constrained Controller to select representative samples for getting a more correct inter-system ranking.Experiment results on 137 real NLG evaluation setups with 44 human evaluation metrics across 16 datasets and 5 NLG tasks demonstrate CASF receives 93.18% top-ranked system recognition accuracy and ranks first or ranks second on 90.91% of the human metrics with 0.83 overall inter-system ranking Kendall correlation.Code and data are publicly available online.
Related papers
- A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look [52.114284476700874]
This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed.
We find that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness.
Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits.
arXiv Detail & Related papers (2024-11-13T01:12:35Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
Existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale.
We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units.
We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems.
arXiv Detail & Related papers (2022-12-15T17:26:05Z) - Abnormal-aware Multi-person Evaluation System with Improved Fuzzy
Weighting [0.0]
We choose the two-stage screening method, which consists of rough screening and score-weighted Kendall-$tau$ Distance.
We use Fuzzy Synthetic Evaluation Method(FSE) to determine the significance of scores given by reviewers as well as their reliability.
arXiv Detail & Related papers (2022-05-01T03:42:43Z) - Active Evaluation: Efficient NLG Evaluation with Few Pairwise
Comparisons [19.547476809031764]
We introduce Active Evaluation, a framework to efficiently identify the top-ranked system.
We show that the number of human annotations can be reduced by 80%.
We also propose model-based dueling bandit algorithms which combine automatic evaluation metrics with human evaluations.
arXiv Detail & Related papers (2022-03-11T16:39:15Z) - Using Sampling to Estimate and Improve Performance of Automated Scoring
Systems with Guarantees [63.62448343531963]
We propose a combination of the existing paradigms, sampling responses to be scored by humans intelligently.
We observe significant gains in accuracy (19.80% increase on average) and quadratic weighted kappa (QWK) (25.60% on average) with a relatively small human budget.
arXiv Detail & Related papers (2021-11-17T05:00:51Z) - Better than Average: Paired Evaluation of NLP Systems [31.311553903738798]
We show the importance of taking the instance-level pairing of evaluation scores into account.
We release a practical tool for performing the full analysis of evaluation scores with the mean, median, BT, and two variants of BT (Elo and TrueSkill)
arXiv Detail & Related papers (2021-10-20T19:40:31Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z) - PONE: A Novel Automatic Evaluation Metric for Open-Domain Generative
Dialogue Systems [48.99561874529323]
There are three kinds of automatic methods to evaluate the open-domain generative dialogue systems.
Due to the lack of systematic comparison, it is not clear which kind of metrics are more effective.
We propose a novel and feasible learning-based metric that can significantly improve the correlation with human judgments.
arXiv Detail & Related papers (2020-04-06T04:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.