Inductive Global and Local Manifold Approximation and Projection
- URL: http://arxiv.org/abs/2406.08097v1
- Date: Wed, 12 Jun 2024 11:22:27 GMT
- Title: Inductive Global and Local Manifold Approximation and Projection
- Authors: Jungeum Kim, Xiao Wang,
- Abstract summary: We first propose GLoMAP, a novel manifold learning method for dimensional reduction and high-dimensional data visualization.
We extend GLoMAP to its inductive version, iGLoMAP, which utilizes a deep neural network to map data to its lower-dimensional representation.
We have successfully applied both GLoMAP and iGLoMAP to the simulated and real-data settings, with competitive experiments against the state-of-the-art methods.
- Score: 5.629705943815797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear dimensional reduction with the manifold assumption, often called manifold learning, has proven its usefulness in a wide range of high-dimensional data analysis. The significant impact of t-SNE and UMAP has catalyzed intense research interest, seeking further innovations toward visualizing not only the local but also the global structure information of the data. Moreover, there have been consistent efforts toward generalizable dimensional reduction that handles unseen data. In this paper, we first propose GLoMAP, a novel manifold learning method for dimensional reduction and high-dimensional data visualization. GLoMAP preserves locally and globally meaningful distance estimates and displays a progression from global to local formation during the course of optimization. Furthermore, we extend GLoMAP to its inductive version, iGLoMAP, which utilizes a deep neural network to map data to its lower-dimensional representation. This allows iGLoMAP to provide lower-dimensional embeddings for unseen points without needing to re-train the algorithm. iGLoMAP is also well-suited for mini-batch learning, enabling large-scale, accelerated gradient calculations. We have successfully applied both GLoMAP and iGLoMAP to the simulated and real-data settings, with competitive experiments against the state-of-the-art methods.
Related papers
- CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction [0.0]
Dimensionality reduction methods are employed to decrease data dimensionality.
This study introduces a clustering-based approach, namely CBMAP, for dimensionality reduction.
CBMAP aims to preserve both global and local structures, ensuring that clusters in lower-dimensional spaces closely resemble those in high-dimensional spaces.
arXiv Detail & Related papers (2024-04-27T15:44:21Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
Temporal Graph Learning (TGL) has become a prevalent technique across diverse real-world applications.
This paper investigates the generalization ability of different TGL algorithms.
We propose a simplified TGL network, which enjoys a small generalization error, improved overall performance, and lower model complexity.
arXiv Detail & Related papers (2024-02-26T08:22:22Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
We propose a scalable manifold learning (scML) method that can manipulate large-scale and high-dimensional data in an efficient manner.
We empirically validated the effectiveness of scML on synthetic datasets and real-world benchmarks of different types.
scML scales well with increasing data sizes and embedding dimensions, and exhibits promising performance in preserving the global structure.
arXiv Detail & Related papers (2024-01-02T08:43:06Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
We propose LaptSNE, a new graph-based dimensionality reduction method based on t-SNE.
Specifically, LaptSNE leverages the eigenvalue information of the graph Laplacian to shrink the potential clusters in the low-dimensional embedding.
We show how to calculate the gradient analytically, which may be of broad interest when considering optimization with Laplacian-composited objective.
arXiv Detail & Related papers (2022-07-25T14:10:24Z) - Deep Recursive Embedding for High-Dimensional Data [9.611123249318126]
We propose to combine deep neural networks (DNN) with mathematics-guided embedding rules for high-dimensional data embedding.
We introduce a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space.
arXiv Detail & Related papers (2021-10-31T23:22:33Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.