Conformal Load Prediction with Transductive Graph Autoencoders
- URL: http://arxiv.org/abs/2406.08281v1
- Date: Wed, 12 Jun 2024 14:47:27 GMT
- Title: Conformal Load Prediction with Transductive Graph Autoencoders
- Authors: Rui Luo, Nicolo Colombo,
- Abstract summary: This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage.
We leverage conformal prediction to calibrate the GNN outputs and produce valid prediction intervals.
- Score: 1.5634429098976406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage. We leverage conformal prediction to calibrate the GNN outputs and produce valid prediction intervals. We handle data heteroscedasticity through error reweighting and Conformalized Quantile Regression (CQR). We compare the performance of our method against baseline techniques on real-world transportation datasets. Our approach has better coverage and efficiency than all baselines and showcases robustness and adaptability.
Related papers
- Graph Sparsification for Enhanced Conformal Prediction in Graph Neural Networks [5.896352342095999]
Conformal Prediction is a robust framework that ensures reliable coverage across machine learning tasks.
SparGCP incorporates graph sparsification and a conformal prediction-specific objective into GNN training.
Experiments on real-world graph datasets demonstrate that SparGCP outperforms existing methods.
arXiv Detail & Related papers (2024-10-28T23:53:51Z) - RoCP-GNN: Robust Conformal Prediction for Graph Neural Networks in Node-Classification [0.0]
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting outcomes in graph-structured data.
One way to address this issue is by providing prediction sets that contain the true label with a predefined probability margin.
We propose a novel approach termed Robust Conformal Prediction for GNNs (RoCP-GNN)
Our approach robustly predicts outcomes with any predictive GNN model while quantifying the uncertainty in predictions within the realm of graph-based semi-supervised learning (SSL)
arXiv Detail & Related papers (2024-08-25T12:51:19Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data.
Despite their efficacy, GNNs have limited ability to provide robust uncertainty estimates.
We propose Conditional Shift Robust (CondSR) conformal prediction for GNNs.
arXiv Detail & Related papers (2024-05-20T11:47:31Z) - ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes.
The performance of GNNs is limited by poor generalization and fragile robustness caused by noisy and redundant graph data.
We propose a novel adversarial edge-dropping method (ADEdgeDrop) that leverages an adversarial edge predictor guiding the removal of edges.
arXiv Detail & Related papers (2024-03-14T08:31:39Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Stable Prediction on Graphs with Agnostic Distribution Shift [105.12836224149633]
Graph neural networks (GNNs) have been shown to be effective on various graph tasks with randomly separated training and testing data.
In real applications, however, the distribution of training graph might be different from that of the test one.
We propose a novel stable prediction framework for GNNs, which permits both locally and globally stable learning and prediction on graphs.
arXiv Detail & Related papers (2021-10-08T02:45:47Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data.
Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data.
This paper proposes Topology Adaptive Edge Dropping to improve generalization performance and learn robust GNN models.
arXiv Detail & Related papers (2021-06-05T13:20:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.