Improving LLMs for Recommendation with Out-Of-Vocabulary Tokens
- URL: http://arxiv.org/abs/2406.08477v1
- Date: Wed, 12 Jun 2024 17:59:05 GMT
- Title: Improving LLMs for Recommendation with Out-Of-Vocabulary Tokens
- Authors: Ting-Ji Huang, Jia-Qi Yang, Chunxu Shen, Kai-Qi Liu, De-Chuan Zhan, Han-Jia Ye,
- Abstract summary: We show how to effectively tokenize users and items in Large Language Models (LLMs)-based recommender systems.
We emphasize the role of out-of-vocabulary (OOV) tokens in addition to the in-vocabulary ones.
Our proposed framework outperforms existing state-of-the-art methods across various downstream recommendation tasks.
- Score: 51.584024345378005
- License:
- Abstract: Characterizing users and items through vector representations is crucial for various tasks in recommender systems. Recent approaches attempt to apply Large Language Models (LLMs) in recommendation through a question and answer format, where real users and items (e.g., Item No.2024) are represented with in-vocabulary tokens (e.g., "item", "20", "24"). However, since LLMs are typically pretrained on natural language tasks, these in-vocabulary tokens lack the expressive power for distinctive users and items, thereby weakening the recommendation ability even after fine-tuning on recommendation tasks. In this paper, we explore how to effectively tokenize users and items in LLM-based recommender systems. We emphasize the role of out-of-vocabulary (OOV) tokens in addition to the in-vocabulary ones and claim the memorization of OOV tokens that capture correlations of users/items as well as diversity of OOV tokens. By clustering the learned representations from historical user-item interactions, we make the representations of user/item combinations share the same OOV tokens if they have similar properties. Furthermore, integrating these OOV tokens into the LLM's vocabulary allows for better distinction between users and items and enhanced capture of user-item relationships during fine-tuning on downstream tasks. Our proposed framework outperforms existing state-of-the-art methods across various downstream recommendation tasks.
Related papers
- STORE: Streamlining Semantic Tokenization and Generative Recommendation with A Single LLM [59.08493154172207]
We propose a unified framework to streamline the semantic tokenization and generative recommendation process.
We formulate semantic tokenization as a text-to-token task and generative recommendation as a token-to-token task, supplemented by a token-to-text reconstruction task and a text-to-token auxiliary task.
All these tasks are framed in a generative manner and trained using a single large language model (LLM) backbone.
arXiv Detail & Related papers (2024-09-11T13:49:48Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - Large Language Model Driven Recommendation [34.45328907249946]
The advent of language-driven recommendation has unlocked the use of natural language (NL) interactions for recommendation.
This chapter discusses how LLMs' abilities for general NL reasoning present novel opportunities to build highly personalized RSs.
arXiv Detail & Related papers (2024-08-20T15:36:24Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
Large language models have been flourishing in the natural language processing (NLP) domain.
Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns.
Existing works only fine-tune a sole LLM on given text data without introducing that important information to it.
arXiv Detail & Related papers (2024-06-27T01:37:57Z) - TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation [16.93374578679005]
TokenRec is a novel framework for tokenizing and retrieving large-scale language models (LLMs) based Recommender Systems (RecSys)
Our strategy, Masked Vector-Quantized (MQ) Tokenizer, quantizes the masked user/item representations learned from collaborative filtering into discrete tokens.
Our generative retrieval paradigm is designed to efficiently recommend top-$K$ items for users to eliminate the need for auto-regressive decoding and beam search processes.
arXiv Detail & Related papers (2024-06-15T00:07:44Z) - SEP: Self-Enhanced Prompt Tuning for Visual-Language Model [93.94454894142413]
We introduce a novel approach named Self-Enhanced Prompt Tuning (SEP)
SEP explicitly incorporates discriminative prior knowledge to enhance both textual-level and visual-level embeddings.
Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning.
arXiv Detail & Related papers (2024-05-24T13:35:56Z) - Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation [50.19602159938368]
Large language models (LLMs) are revolutionizing conversational recommender systems.
We propose a Reindex-Then-Adapt (RTA) framework, which converts multi-token item titles into single tokens within LLMs.
Our framework demonstrates improved accuracy metrics across three different conversational recommendation datasets.
arXiv Detail & Related papers (2024-05-20T15:37:55Z) - Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket
Recommendation [50.55786122323965]
Next-basket recommendation (NBR) aims to infer the items in the next basket given the corresponding basket sequence.
HEKP4NBR transforms the knowledge graph (KG) into prompts, namely Knowledge Tree Prompt (KTP), to help PLM encode the Out-Of-Vocabulary (OOV) item IDs.
A hypergraph convolutional module is designed to build a hypergraph based on item similarities measured by an MoE model from multiple aspects.
arXiv Detail & Related papers (2023-12-26T02:12:21Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.