ICE-G: Image Conditional Editing of 3D Gaussian Splats
- URL: http://arxiv.org/abs/2406.08488v1
- Date: Wed, 12 Jun 2024 17:59:52 GMT
- Title: ICE-G: Image Conditional Editing of 3D Gaussian Splats
- Authors: Vishnu Jaganathan, Hannah Hanyun Huang, Muhammad Zubair Irshad, Varun Jampani, Amit Raj, Zsolt Kira,
- Abstract summary: We introduce a novel approach to quickly edit a 3D model from a single reference view.
Our technique first segments the edit image, and then matches semantically corresponding regions across chosen segmented dataset views.
A color or texture change from a particular region of the edit image can then be applied to other views automatically in a semantically sensible manner.
- Score: 45.112689255145625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently many techniques have emerged to create high quality 3D assets and scenes. When it comes to editing of these objects, however, existing approaches are either slow, compromise on quality, or do not provide enough customization. We introduce a novel approach to quickly edit a 3D model from a single reference view. Our technique first segments the edit image, and then matches semantically corresponding regions across chosen segmented dataset views using DINO features. A color or texture change from a particular region of the edit image can then be applied to other views automatically in a semantically sensible manner. These edited views act as an updated dataset to further train and re-style the 3D scene. The end-result is therefore an edited 3D model. Our framework enables a wide variety of editing tasks such as manual local edits, correspondence based style transfer from any example image, and a combination of different styles from multiple example images. We use Gaussian Splats as our primary 3D representation due to their speed and ease of local editing, but our technique works for other methods such as NeRFs as well. We show through multiple examples that our method produces higher quality results while offering fine-grained control of editing. Project page: ice-gaussian.github.io
Related papers
- NeRF-Insert: 3D Local Editing with Multimodal Control Signals [97.91172669905578]
NeRF-Insert is a NeRF editing framework that allows users to make high-quality local edits with a flexible level of control.
We cast scene editing as an in-painting problem, which encourages the global structure of the scene to be preserved.
Our results show better visual quality and also maintain stronger consistency with the original NeRF.
arXiv Detail & Related papers (2024-04-30T02:04:49Z) - View-Consistent 3D Editing with Gaussian Splatting [50.6460814430094]
View-consistent Editing (VcEdit) is a novel framework that seamlessly incorporates 3DGS into image editing processes.
By incorporating consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency.
arXiv Detail & Related papers (2024-03-18T15:22:09Z) - GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing [38.948892064761914]
GaussCtrl is a text-driven method to edit a 3D scene reconstructed by the 3D Gaussian Splatting (3DGS)
Our key contribution is multi-view consistent editing, which enables editing all images together instead of iteratively editing one image.
arXiv Detail & Related papers (2024-03-13T17:35:28Z) - Real-time 3D-aware Portrait Editing from a Single Image [111.27169315556444]
3DPE can edit a face image following given prompts, like reference images or text descriptions.
A lightweight module is distilled from a 3D portrait generator and a text-to-image model.
arXiv Detail & Related papers (2024-02-21T18:36:26Z) - Free-Editor: Zero-shot Text-driven 3D Scene Editing [8.966537479017951]
Training a diffusion model specifically for 3D scene editing is challenging due to the scarcity of large-scale datasets.
We introduce a novel, training-free 3D scene editing technique called textscFree-Editor, which enables users to edit 3D scenes without the need for model retraining.
Our method effectively addresses the issue of multi-view style inconsistency found in state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2023-12-21T08:40:57Z) - Editing 3D Scenes via Text Prompts without Retraining [80.57814031701744]
DN2N is a text-driven editing method that allows for the direct acquisition of a NeRF model with universal editing capabilities.
Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images.
Our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer.
arXiv Detail & Related papers (2023-09-10T02:31:50Z) - SINE: Semantic-driven Image-based NeRF Editing with Prior-guided Editing
Field [37.8162035179377]
We present a novel semantic-driven NeRF editing approach, which enables users to edit a neural radiance field with a single image.
To achieve this goal, we propose a prior-guided editing field to encode fine-grained geometric and texture editing in 3D space.
Our method achieves photo-realistic 3D editing using only a single edited image, pushing the bound of semantic-driven editing in 3D real-world scenes.
arXiv Detail & Related papers (2023-03-23T13:58:11Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.