Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference
- URL: http://arxiv.org/abs/2406.08607v1
- Date: Wed, 12 Jun 2024 19:26:35 GMT
- Title: Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference
- Authors: Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, Shiyu Chang,
- Abstract summary: We propose a novel unlearning framework called Unlearning from Logit Difference (ULD)
Our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold.
- Score: 39.29939437034823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality. Our code will be publicly available at https://github.com/UCSB-NLP-Chang/ULD.
Related papers
- MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts [29.593170782882563]
Large Language Models (LLMs) can memorize sensitive information, raising concerns about potential misuse.
Previous practices face three key challenges: Utility, efficiency, and robustness.
We propose MEOW, a gradient descent-based unlearning method.
arXiv Detail & Related papers (2024-09-18T09:55:48Z) - SNAP: Unlearning Selective Knowledge in Large Language Models with Negative Instructions [37.172662930947446]
Instruction-following large language models (LLMs) inadvertently disclose personal or copyrighted information.
We propose SNAP, an innovative framework designed to selectively unlearn information.
We evaluate our framework on various NLP benchmarks and demonstrate that our approach retains the original LLM capabilities.
arXiv Detail & Related papers (2024-06-18T06:54:05Z) - LinkGPT: Teaching Large Language Models To Predict Missing Links [23.57145845001286]
Large Language Models (LLMs) have shown promising results on various language and vision tasks.
Recently, there has been growing interest in applying LLMs to graph-based tasks, particularly on Text-Attributed Graphs (TAGs)
arXiv Detail & Related papers (2024-06-07T04:54:36Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.