Fine-Tuned 'Small' LLMs (Still) Significantly Outperform Zero-Shot Generative AI Models in Text Classification
- URL: http://arxiv.org/abs/2406.08660v2
- Date: Fri, 16 Aug 2024 15:33:23 GMT
- Title: Fine-Tuned 'Small' LLMs (Still) Significantly Outperform Zero-Shot Generative AI Models in Text Classification
- Authors: Martin Juan José Bucher, Marco Martini,
- Abstract summary: Generative AI offers a simple, prompt-based alternative to fine-tuning smaller BERT-style LLMs for text classification tasks.
We show that smaller, fine-tuned LLMs consistently and significantly outperform larger, zero-shot prompted models in text classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI offers a simple, prompt-based alternative to fine-tuning smaller BERT-style LLMs for text classification tasks. This promises to eliminate the need for manually labeled training data and task-specific model training. However, it remains an open question whether tools like ChatGPT can deliver on this promise. In this paper, we show that smaller, fine-tuned LLMs (still) consistently and significantly outperform larger, zero-shot prompted models in text classification. We compare three major generative AI models (ChatGPT with GPT-3.5/GPT-4 and Claude Opus) with several fine-tuned LLMs across a diverse set of classification tasks (sentiment, approval/disapproval, emotions, party positions) and text categories (news, tweets, speeches). We find that fine-tuning with application-specific training data achieves superior performance in all cases. To make this approach more accessible to a broader audience, we provide an easy-to-use toolkit alongside this paper. Our toolkit, accompanied by non-technical step-by-step guidance, enables users to select and fine-tune BERT-like LLMs for any classification task with minimal technical and computational effort.
Related papers
- Prompt Refinement or Fine-tuning? Best Practices for using LLMs in Computational Social Science Tasks [0.0]
We present an overview of the performance of modern LLM-based classification methods on a benchmark of 23 social knowledge tasks.
Our results point to three best practices: select models with larger vocabulary and pre-training corpora; avoid simple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific data.
arXiv Detail & Related papers (2024-08-02T15:46:36Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
Large language models (LLMs) have demonstrated remarkable success in NLP tasks.
We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks.
Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data
arXiv Detail & Related papers (2024-03-27T22:05:10Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
We show that AuT-Few outperforms state-of-the-art few-shot learning methods.
We also show that AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark.
arXiv Detail & Related papers (2023-05-21T21:50:27Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z) - Beyond prompting: Making Pre-trained Language Models Better Zero-shot
Learners by Clustering Representations [24.3378487252621]
We show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of pre-trained language models.
Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning.
arXiv Detail & Related papers (2022-10-29T16:01:51Z) - PERFECT: Prompt-free and Efficient Few-shot Learning with Language
Models [67.3725459417758]
PERFECT is a simple and efficient method for few-shot fine-tuning of PLMs without relying on any such handcrafting.
We show that manually engineered task prompts can be replaced with task-specific adapters that enable sample-efficient fine-tuning.
Experiments on a wide range of few-shot NLP tasks demonstrate that PERFECT, while being simple and efficient, also outperforms existing state-of-the-art few-shot learning methods.
arXiv Detail & Related papers (2022-04-03T22:31:25Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
Unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model.
In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM.
arXiv Detail & Related papers (2021-10-04T08:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.