Deep Exploration of Cross-Lingual Zero-Shot Generalization in Instruction Tuning
- URL: http://arxiv.org/abs/2406.08796v1
- Date: Thu, 13 Jun 2024 04:10:17 GMT
- Title: Deep Exploration of Cross-Lingual Zero-Shot Generalization in Instruction Tuning
- Authors: Janghoon Han, Changho Lee, Joongbo Shin, Stanley Jungkyu Choi, Honglak Lee, Kynghoon Bae,
- Abstract summary: We explore cross-lingual generalization in instruction tuning by applying it to non-English tasks.
We design cross-lingual templates to mitigate discrepancies in language and instruction-format of the template between training and inference.
Our experiments reveal consistent improvements through cross-lingual generalization in both English and Korean.
- Score: 47.75550640881761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning has emerged as a powerful technique, significantly boosting zero-shot performance on unseen tasks. While recent work has explored cross-lingual generalization by applying instruction tuning to multilingual models, previous studies have primarily focused on English, with a limited exploration of non-English tasks. For an in-depth exploration of cross-lingual generalization in instruction tuning, we perform instruction tuning individually for two distinct language meta-datasets. Subsequently, we assess the performance on unseen tasks in a language different from the one used for training. To facilitate this investigation, we introduce a novel non-English meta-dataset named "KORANI" (Korean Natural Instruction), comprising 51 Korean benchmarks. Moreover, we design cross-lingual templates to mitigate discrepancies in language and instruction-format of the template between training and inference within the cross-lingual setting. Our experiments reveal consistent improvements through cross-lingual generalization in both English and Korean, outperforming baseline by average scores of 20.7\% and 13.6\%, respectively. Remarkably, these enhancements are comparable to those achieved by monolingual instruction tuning and even surpass them in some tasks. The result underscores the significance of relevant data acquisition across languages over linguistic congruence with unseen tasks during instruction tuning.
Related papers
- CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment [38.35458193262633]
English-centric models are usually suboptimal in other languages.
We propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data.
arXiv Detail & Related papers (2024-04-18T06:20:50Z) - Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions? [42.37657013017192]
We show that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 9.9%.
We also conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios.
arXiv Detail & Related papers (2024-02-21T11:07:07Z) - Is Prompt-Based Finetuning Always Better than Vanilla Finetuning?
Insights from Cross-Lingual Language Understanding [0.30586855806896046]
We propose the ProFiT pipeline to investigate the cross-lingual capabilities of Prompt-based Finetuning.
Our results reveal the effectiveness and versatility of prompt-based finetuning in cross-lingual language understanding.
arXiv Detail & Related papers (2023-07-15T20:33:33Z) - Multilingual Relation Classification via Efficient and Effective
Prompting [9.119073318043952]
We present the first work on prompt-based multilingual relation classification (RC)
We introduce an efficient and effective method that constructs prompts from relation triples and involves only minimal translation for the class labels.
We evaluate its performance in fully supervised, few-shot and zero-shot scenarios, and analyze its effectiveness across 14 languages.
arXiv Detail & Related papers (2022-10-25T08:40:23Z) - Cross-lingual Lifelong Learning [53.06904052325966]
We present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm.
We provide insights into what makes multilingual sequential learning particularly challenging.
The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata.
arXiv Detail & Related papers (2022-05-23T09:25:43Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
We extend the vanilla pretrain-finetune pipeline with extra code-switching restore task to bridge the gap between the pretrain and finetune stages.
Our approach could narrow the cross-lingual sentence representation distance and improve low-frequency word translation with trivial computational cost.
arXiv Detail & Related papers (2022-04-16T16:08:38Z) - Consistency Regularization for Cross-Lingual Fine-Tuning [61.08704789561351]
We propose to improve cross-lingual fine-tuning with consistency regularization.
Specifically, we use example consistency regularization to penalize the prediction sensitivity to four types of data augmentations.
Experimental results on the XTREME benchmark show that our method significantly improves cross-lingual fine-tuning across various tasks.
arXiv Detail & Related papers (2021-06-15T15:35:44Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
Cross-lingual TRansfer Evaluation of Multilinguals XTREME is a benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks.
We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models.
arXiv Detail & Related papers (2020-03-24T19:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.