AIM: Attributing, Interpreting, Mitigating Data Unfairness
- URL: http://arxiv.org/abs/2406.08819v2
- Date: Tue, 18 Jun 2024 07:02:45 GMT
- Title: AIM: Attributing, Interpreting, Mitigating Data Unfairness
- Authors: Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik Hamann, Hanghang Tong,
- Abstract summary: Existing fair machine learning (FairML) research has predominantly focused on mitigating discriminative bias in the model prediction.
We investigate a novel research problem: discovering samples that reflect biases/prejudices from the training data.
We propose practical algorithms for measuring and countering sample bias.
- Score: 40.351282126410545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data collected in the real world often encapsulates historical discrimination against disadvantaged groups and individuals. Existing fair machine learning (FairML) research has predominantly focused on mitigating discriminative bias in the model prediction, with far less effort dedicated towards exploring how to trace biases present in the data, despite its importance for the transparency and interpretability of FairML. To fill this gap, we investigate a novel research problem: discovering samples that reflect biases/prejudices from the training data. Grounding on the existing fairness notions, we lay out a sample bias criterion and propose practical algorithms for measuring and countering sample bias. The derived bias score provides intuitive sample-level attribution and explanation of historical bias in data. On this basis, we further design two FairML strategies via sample-bias-informed minimal data editing. They can mitigate both group and individual unfairness at the cost of minimal or zero predictive utility loss. Extensive experiments and analyses on multiple real-world datasets demonstrate the effectiveness of our methods in explaining and mitigating unfairness. Code is available at https://github.com/ZhiningLiu1998/AIM.
Related papers
- Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors [28.869581543676947]
unsupervised outlier detection (OD) has numerous applications in finance, security, etc.
This work aims to shed light on the possible sources of unfairness in OD by auditing detection models under different data-centric factors.
We find that the OD algorithms under the study all exhibit fairness pitfalls, although differing in which types of data bias they are more susceptible to.
arXiv Detail & Related papers (2024-08-24T20:35:32Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Deep Learning on a Healthy Data Diet: Finding Important Examples for
Fairness [15.210232622716129]
Data-driven predictive solutions predominant in commercial applications tend to suffer from biases and stereotypes.
Data augmentation reduces gender bias by adding counterfactual examples to the training dataset.
We show that some of the examples in the augmented dataset can be not important or even harmful for fairness.
arXiv Detail & Related papers (2022-11-20T22:42:30Z) - Unbiased Supervised Contrastive Learning [10.728852691100338]
In this work, we tackle the problem of learning representations that are robust to biases.
We first present a margin-based theoretical framework that allows us to clarify why recent contrastive losses can fail when dealing with biased data.
We derive a novel formulation of the supervised contrastive loss (epsilon-SupInfoNCE), providing more accurate control of the minimal distance between positive and negative samples.
Thanks to our theoretical framework, we also propose FairKL, a new debiasing regularization loss, that works well even with extremely biased data.
arXiv Detail & Related papers (2022-11-10T13:44:57Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
We argue that algorithmic unfairness stems from interactions between models and biases in the data.
We study a set of hypotheses regarding the fairness-accuracy trade-offs that fairness-blind ML algorithms exhibit under different data bias settings.
arXiv Detail & Related papers (2022-07-13T15:18:30Z) - Bias-Tolerant Fair Classification [20.973916494320246]
label bias and selection bias are two reasons in data that will hinder the fairness of machine-learning outcomes.
We propose a Bias-TolerantFAirRegularizedLoss (B-FARL) which tries to regain the benefits using data affected by label bias and selection bias.
B-FARL takes the biased data as input, calls a model that approximates the one trained with fair but latent data, and thus prevents discrimination without constraints required.
arXiv Detail & Related papers (2021-07-07T13:31:38Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.